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1 Vorbemerkungen
• Die Maxwell’schen Gleichungen ermöglichen die vollständige Beschreibung elektroma-

gnetischer Wellen und damit von Licht im Wellenbild – aber nicht im Teilchenbild.

• Im Teilchenbild besteht Licht aus Lichtquanten, den Photonen (Index ph für Photon).

• Im photoelektrischen Effekt manifestiert sich der Teilchencharakter des Lichts als
Planck-Einstein-Beziehung

Eph = h · ν

(Eph Energie eines Photons, h Planck’sches Wirkungsquantum, ν Lichtfrequenz).

• Die Wellenlänge λ bzw. der Wellenvektor k⃗ oder die Wellenzahl |k⃗ | = k = 2π
λ sind

charakteristische Welleneigenschaften.
Der Impuls |p⃗ | = p ist eine charakteristische Teilcheneigenschaft.
Die De Broglie-Beziehung

p = ℏ · k = h

2π ·
2π
λ

= h

λ

gilt für Teilchen ohne Ruhemasse, also für Photonen, und verknüpft den Wellencharakter
(Wellenlänge λ) des Lichts mit dessen Teilchencharakter (Impuls p), wie man am Beispiel
des Strahlungsdrucks verifizieren kann:
Dass ein Photon den Impuls pph besitzt, zeigt sich in der Kraftwirkung beim Auftreffen
von Licht auf ein Hindernis, d. h. durch den vom Licht ausgeübten Strahlungsdruck P .
Ausgehend von der Maxwell’schen Gleichung ∇× E⃗ = − ∂

∂tB⃗ für das Vakuum und
ausgehend von den aus den Maxwell’schen Gleichungen abgeleiteten Wellengleichun-
gen

∇2E⃗ = 1
c2

∂2

∂t2
E⃗ bzw. ∇2B⃗ = 1

c2
∂2

∂t2
B⃗ (1)

für das E⃗-Feld bzw. für das B⃗-Feld im Vakuum erhalten wir die Beziehung∣∣B⃗∣∣ = 1
c

∣∣E⃗∣∣ = 1
c
E

und damit dann den Strahlungsdruck P einer elektromagnetischen Welle :1

P = I

c
, Intensität I , Vakuumlichtgeschwindigkeit c .

Für den Strahlungsdruck gilt also sinngemäß

Strahlungsdruck = Kraft
Fläche = Impuls

Zeit · Fläche =
1
c Energie

Zeit · Fläche = 1
c
· Intensität .

Ist i die „Teilchenzahlintensität“, also die Anzahl der pro Zeiteinheit und pro Flächen-
einheit auf ein Hindernis treffenden Photonen monochromatischen Lichts der Frequenz
ν, dann gilt mit dem Impuls pph und der Energie h · ν eines Photons

P = I

c
= i · hν

c
= i · h

λ
= i · ℏk = i · pph ⇒

pph = ℏk . □
1Herleitungen des Strahlungsdrucks elektromagnetischer Wellen finden sich beispielsweise in: Spektrum-

Lehrbuch Physik von Paul A. Tipler, 1. Auflage, Spektrum Akademischer Verlag, Heidelberg, Berlin, Oxford,
1994, Seite 1000 bis Seite 1005,
Springer-Lehrbuch Gerthsen Physik, H. Vogel, 20. Auflage, Springer-Verlag, Berlin, Heidelberg, New York,
1999, Seite 601.
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• Für ein Teilchen wie beispielsweise das Elektron mit der Ruhemasse m0, der Geschwin-
digkeit v und dem klassischen Impuls p gilt die klassische Beziehung

Ekin = ℏ2k2

2m0
= m0 · v2

2 = 1
2 p · v , v ≪ c . (2)

Photonen besitzen keine Ruhemasse, bewegen sich mit Lichtgeschwindigkeit und sind
demzufolge relativistische Teilchen mit der Energie

Eph = pph · c = h · ν . (3)

(3) resultiert aus

E = mc2 = hν ⇔ m = hν

c2 und pph = m · c = hν

c2 · c =
Eph
c

.

• Photonenspin
Photonen besitzen also einen linearen Impuls pph = hν

c = ℏk mit p⃗ph ⇈ k⃗ .
„ Wenn ein geladenes Teilchen elektromagnetische Strahlung emittiert oder absorbiert,
ändert sich neben seiner Energie und seinem linearen Impuls auch sein Drehimpuls
um ein ganzzahliges Vielfaches von ±ℏ. “2 Neben dem linearen Impuls besitzen
Photonen demzufolge auch einen Drehimpuls bzw. Eigendrehimpuls, auch intrinsischer
Drehimpuls oder kurz Spin s⃗ genannt. Photonen sind folglich Spin-1-Teilchen bzw.
Bosonen.
Der Photonenspin ist unabhängig von der Photonenenergie und entspricht ei-
nem zusätzlichen Freiheitsgrad des Photons (neben dem linearen Impuls). Die
Orientierung des Spins eines Photons ergibt sich aus dessen Helizität σ und wird in
Bezug auf die „erzwungene“ Rotation positiver Ladungen in absorbierenden Medien
definiert:

linkszirkulare Polarisation (L - oder σ+-Zustand) : s⃗ ↿↾ k⃗ ,

rechtszirkulare Polarisation (R - oder σ−-Zustand) : s⃗ ↿⇂ k⃗ .

Bezüglich L und R haben wir hier die althergebrachte Konvention aus der Optik
verwendet. In der Quantenphysik sind die Eigenschaften links- und rechtszirkular über
die Helizität und demzufolge umgekehrt definiert, sodass dort für die zirkularen
Polarisationszustände

L −→ |σ+⟩ = |R⟩ und R −→ |σ−⟩ = |L⟩

gilt.
Linear polarisiertes Licht kann man als Überlagerung gleicher Anteile von rechts- und
linkszirkular polarisiertem Licht auffassen, wobei die beiden Spinzustände ±ℏ mit der
gleichen Wahrscheinlichkeit vorkommen, sodass kein Gesamtspin resultiert.
Dementsprechend handelt es sich bei elliptisch polarisiertem Licht um eine Überlagerung
ungleicher Anteile von |σ+⟩- und |σ−⟩-Zuständen, sodass die Spins +ℏ und −ℏ mit
unterschiedlicher Wahrscheinlichkeit vorkommen und so ein positiver oder negativer
Gesamtspin resultiert.

2Zitiert aus: Eugene Hecht, Optik, 4. Auflage, Oldenbourg Verlag, Wien, München, 2005, Seite 535.
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• Analog zu den Wellengleichungen (1) für elektromagnetische Wellen und unter Be-
rücksichtigung von (2) gilt für nichtrelativistische (klassische) Teilchen mit einer
Ruhemasse m0 allgemein die zeitabhängige Schrödinger-Gleichung

− ℏ2

2m0
∇2 Ψ

(
r⃗, t
)

︸ ︷︷ ︸
=̂ Ekin

+V
(
r⃗, t
)
Ψ
(
r⃗, t
)︸ ︷︷ ︸

=̂ Epot

= iℏ ∂

∂t
Ψ
(
r⃗, t
)

︸ ︷︷ ︸
=̂ Eges

.

Für den Fall eines explizit zeitunabhängigen Potentials V = V (r⃗ ), d. h. für stationäre
Zustände bzw. Gleichgewichtszustände wie beispielsweise beim Atom-Schalenmodell
resultiert aus der zeitabhängigen Schrödinger-Gleichung die zeitunabhängige oder
stationäre Schrödinger-Gleichung

− ℏ2

2m0
∇2 Ψ

(
r⃗
)

+ V
(
r⃗
)
· Ψ
(
r⃗
)

= E · Ψ
(
r⃗
)
.

• Die Lösungen Ψ der Schrödinger-Gleichung sind normierte quadratintegrable komplexe
Wellenfunktionen (Zustände), die auch Wahrscheinlichkeitsamplituden genannt
werden, nicht beobachtbar bzw. nicht messbar sind und demzufolge keine physikalische
Realität besitzen. Die entsprechende beobachtbare Messgröße ist die (reelle) Wahr-
scheinlichkeitsdichte |Ψ |2. Die unter den gegebenen physikalischen Bedingungen
(insbesondere V (r⃗, t)) mit Hilfe der Schrödinger-Gleichung ermittelten Wahrscheinlich-
keitsamplituden ermöglichen mit ihrem Betragsquadrat die räumliche Darstellung der
Wahrscheinlichkeitsverteilung der Energie – ggf. auch in Abhängigkeit von der Zeit.
So entsprechen sich im Raum ausbreitende Wellenpakete zeitabhängigen Zuständen,
während man sich stationäre Zustände als stehende Wellen veranschaulichen kann. Die
Wahrscheinlichkeitsamplitude sagt also etwas aus über die Aufenthalts- oder Antreff-
wahrscheinlichkeit eines Teilchens im Bereich des ihm entsprechenden Wellenpakets
bzw. Wellenzugs.

• Zusammenhang zwischen Beugung (Wellenbild) und
Heisenberg’scher Unschärferelation (Teilchenbild)
Betrachten wir die Beugung von Licht der Wellenlänge λ am Einfachspalt der Breite
b, so gilt im Wellenbild für den Beugungswinkel α bis zum ersten Minimum:

b · sinα = λ ⇔ sinα = λ

b
.

Diese Gleichung lässt sich mit Hilfe der De Broglie-Beziehung auch durch den Im-
puls p⃗ = ℏk⃗, also im Teilchenbild ausdrücken. Dafür nehmen wir an, dass der Spalt
längs der y-Achse verläuft, sich die Spaltbreite folglich längs der x-Achse erstreckt,
und dass sich das einfallende Licht mit dem Wellenvektors k⃗ = (0, 0, kz) längs der
z-Achse ausbreitet. Dann gilt bezüglich des ersten Minimums mit dem Wellenvektor
k⃗ = (kx, 0, kz) des ausfallenden Lichts in der (z, x)-Ebene hinter dem Spalt :

kx = |k⃗ | sinα = k sinα = 2π
λ

sinα = 2π
λ

λ

b
= 2π

b
.

Die daraus resultierende de-Broglie-Beziehung lautet

px = ℏ kx = h

2π
2π
b

= h

b
⇔

px · b = h .
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„ b kann man als eine Positionsfestlegung der durchgehenden Photonen auf der
x-Achse auf den Bereich ∆x = b interpretieren. ∆px andererseits kann man als eine
Unbestimmtheit des Impulses px in Bezug auf die x-Richtung interpretieren, da es ja
eine vertikale Ablenkung von der geradlinigen Fortbewegung beschreibt. Der Grund
dafür liegt darin, dass jeder Punkt auf dem „Beugungsfleck“ als möglicher Auftreffpunkt
eines Photons in Frage kommt. D. h. der Beugungsfleck engt im Wesentlichen den
Bereich ein, in dem das Photon statistisch betrachtet auftreffen kann. In diesem Sinne
kann man obige Gleichung auch so schreiben: “3

∆px ·∆x ≈ h = 2πℏ .

Dies entspricht der Heisenberg’schen Impuls-Orts-Unschärferelation

∆px ·∆x ≥
h

4π = ℏ
2 .

Die Lichtbeugung im Wellenbild entspricht, wie man sieht, der Heisenberg’schen Unschär-
ferelation im Teilchenbild. Dies zeigt sich in der Tatsache, dass sich das „Beugungsbild“
aufspreizt, wenn der Spalt schmaler gewählt wird. Mit anderen Worten, wenn die Breite
b = ∆x des Spalts und damit auch die Unbestimmtheit der Photonen im Ort kleiner
werden, wird im Gegenzug die Unbestimmtheit ∆px des Impulses der Photonen größer.
Die Unbestimmtheit im Ort und im Impuls der Teilchen verhalten sich in bestimmter
Weise reziprok zueinander.
Der Vollständigkeit halber geben wir noch die Heisenberg’sche Energie-Zeit-
Unschärferelation an:

∆E ·∆t ≥ ℏ
2 .

3Mit kleinen Änderungen der Notation zitiert aus: Josef Oswald, Grundprinzipien der Quantenphysik,
Vorlesung – WS03/04, Seite 9, https://oswald.unileoben.ac.at/qpvl_1/qpvl.pdf
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2 Intensität elektromagnetischer Wellen
Siehe auch: Wolfgang Demtröder, Springer-Lehrbuch Experimentalphysik 2, Elektrizität und Optik, 3. Auflage,
Springer-Verlag, Berlin, Heidelberg, New York, 2004, Abschnitt 7.5 Das Magnetfeld elektromagnetischer Wellen
und Abschnitt 7.6 Energie- und Impulstransport durch elektromagnetische Wellen, Seite 193 bis Seite 195.

Die (momentane) Energieflussdichte, auch Energiestromdichte genannt, ist definiert durch
den

Poynting-Vektor S⃗ = E⃗ × H⃗ = 1
µ0

(
E⃗ × B⃗

)
= ε0c

2
0
(
E⃗ × B⃗

)
.

H⃗ ist die magnetische Feldstärke und B⃗ die magnetische Flussdichte. Die Vektoren
S⃗, E⃗, H⃗ bilden ein rechtshändiges, rechtwinkliges Dreibein. Im Vakuum propagiert die
damit beschriebene elektromagnetische Welle in Richtung des Wellenvektors k⃗, wobei dann
k⃗ ⇈ S⃗ ist und folglich auch k⃗, E⃗, B⃗ ein rechtshändiges Dreibein bilden gemäß

B⃗ = 1
ω

(
k⃗ × E⃗

)
⇒ B = 1

ω
(k · E) .

Dabei haben wir ω = c0 · k ⇔ 1
c0 k

= 1
ω

verwendet.

Für eine ebene elektromagnetische Welle im Vakuum gilt folglich:
Die Feldvektoren E⃗ und B⃗ stehen senkrecht aufeinander, schwingen in Phase und stehen
senkrecht zur Ausbreitungsrichtung, definiert durch den Wellenvektor k⃗, sodass für den
Betrag von B⃗ gilt ∣∣B⃗∣∣ = 1

c0

∣∣E⃗∣∣ ⇒ B = 1
c0
E .

Achtung! Bei Anwesenheit von elektrischen Strömen oder/und Ladungen stehen E⃗
und B⃗ nicht unbedingt senkrecht aufeinander und in anisotropen Medien können S⃗ und
k⃗ in verschiedene Richtungen zeigen.

Der zeitliche Mittelwert des Betrags des Poynting-Vektors (im Vakuum) über ein
Zeitintervall ∆t≫ T = 1

ν = λ
c0

ist die1

Intensität I =
〈∣∣S⃗∣∣〉 = ε0c

2
0
〈∣∣E⃗ × B⃗

∣∣〉 = ε0c0
〈
E2〉 .

Mit dem Betrag A der Amplitude A⃗ des elektrischen Feldes E⃗ = A⃗ · cos
(
k⃗r⃗ − ωt

)
ist der

zeitliche Mittelwert von E2 :〈
E2〉 = A2 ·

〈
cos2 (k⃗r⃗ − ωt

)〉︸ ︷︷ ︸
= 1

2 für ∆t ≫ T

= 1
2 A

2 .

Damit ist die Intensität einer ebenen elektromagnetischen Welle im Vakuum

I = 1
2 ε0c0A

2 . (4)

Sinngemäß ist die Intensität die pro Zeiteinheit durch eine Flächeneinheit fließende zeitlich
gemittelte Energie. Sie besitzt demzufolge die Maßeinheit

[I] = 1 J
s ·m2 = 1 W/m2 .

1Die Intensität wird in der Optik auch Bestrahlungsstärke genannt.
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Betrachten wir die Intensität einer elektromagnetischen Welle innerhalb eines homogenen,
isotropen Dielektrikums (Mediums) mit dem Brechungsindex n, so wird in (4) aus der
elektrischen Feldkonstante bzw. der Permittivität des Vakuums ε0 die Permittivität des
Mediums ε = εr · ε0
und aus der Vakuumlichtgeschwindigkeit c0 die Lichtgeschwindigkeit im Medium

c = c0
n
.

Die Intensität einer ebenen elektromagnetischen Welle in einem homogenen, isotropen Medium
ist damit schließlich

I = 1
2 εrε0

c0
n
A2 = 1

2 ε cA
2 .

Achtung! Überlagerte kohärente Wellenzüge unterscheiden sich in ihrer Intensität von
überlagerten inkohärenten Wellenzügen:
Siehe dazu die Abschnitte Kohärente Streuung und Interferenz sowie Inkohärente Streuung
unter
www.ieap.uni-kiel.de/et/people/wimmer/teaching/Phys_II/P2_V8.pdf

• Überlagerung kohärenter Wellenzüge (kohärente Streuung):
Die Intensität entspricht dem Quadrat der Summe aller Amplituden der Wellenzüge
(aller Streuamplituden).
In Abhängigkeit von der Phasendifferenz δ bzw. dem Gangunterschied ∆s zwischen den
Wellenzügen liefert die Intensität ein Interferenzmuster (siehe auch Abschnitt 11.2.1)
mit den Maxima

Imax = 1
2ε0c0(A1 +A2)2 für δ = m · 2π , m = 0, 1, 2, . . .

und den Minima
Imin = 1

2ε0c0(A1 −A2)2 für δ = (2m+ 1) · π , m = 0, 1, 2, . . . .

• Überlagerung inkohärenter Wellenzüge (inkohärente Streuung):
Die Intensität ist gleich der Summe der Intensitäten der einzelnen Wellenzüge (der
gestreuten Wellen):

I = I1 + I2 = 1
2ε0c0(A2

1 +A2
2) .

Wie man sieht, entsteht bei Inkohärenz der Wellenzüge kein Interferenzmuster.
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Kugelwellen

Beim Umgang mit (zentralsymmetrischen) Kugelwellen ist es bequemer, Polarkoordinaten zu
verwenden. So bezeichnet die Koordinate |r⃗ | = r ∈ R den räumlichen Abstand eines Punktes
im Kugelwellenfeld von der Quelle. Weil bei Kugelwellen k⃗ ⇈ r⃗ gilt, können wir statt k⃗· r⃗
vereinfachend kr schreiben. Für die Intensität bzw. Bestrahlungsstärke hatten wir bereits
festgestellt:

I ∝
∣∣E⃗∣∣2 = E2 . (5)

Im Gegensatz zur ebenen Welle E⃗(r⃗, t) = A eik⃗r⃗−ωt ist bei der Kugelwelle die Phase neben t
insbesondere von r abhängig und die Intensität und folglich auch die Amplitude A hängen nur
vom Abstand r zur Punktquelle ab. Aus der vektoriellen Darstellung E⃗(r⃗, t) in kartesischen
Koordinaten wird somit E(r, t) in Polarkoordinaten. Weil für die Intensität der Kugelwelle
das Abstandsquadrat-Gesetz gilt, also

I ∝ 1
r2 ,

müssen wegen (5) für die Kugelwelle die folgenden Beziehungen gelten :

E ∝ 1
r
⇒ E(r, t) = A(r) ei(kr−ωt) = A0

r
ei(kr−ωt) .

Dabei ist die Amplitude A(r) = A0
r umgekehrt proportional zum Abstand r von der Quelle

gemäß
A(r) ∝ 1

r
.

A0 = const ist hier also nicht die Amplitude, was man auch an der Dimension von A0 sieht.
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3 Absorption und Emission elektromagnetischer Strahlung
3.1 Schalenmodell und Orbitalmodell

Literaturtips:
• Holger Hoffmeister, Freies Lehrbuch „Anorganische Chemie“, Kapitel 19 Das Orbitalmodell

als Atommodell, 2020
https://hoffmeister.it/index.php/chemiebuch-anorganik/227-freies-lehrbuch-

anorganische-chemie-19-das-orbitalmodell-als-atommodell

• 5. Energiezustände von Atomen und Atomorbitale
https://ethz.ch/content/dam/ethz/special-interest/chab/physical-chemistry/

ultrafast-spectroscopy-dam/documents/lectures/allgemeinechemieHS17/script/

Kapitel%205.pdf

Wir betrachten im Folgenden nicht Moleküle sondern vereinfachend und ausgehend vom
Periodensystem der Elemente nur Atome. Atome besitzen genauso viele Elektronen wie
Protonen, sind also nicht ionisiert und demzufolge nach außen elektrisch neutral. Die Ord-
nungszahl der Elemente repräsentiert die Anzahl der Protonen im Atomkern und damit
auch die Anzahl der Elektronen in der zugehörigen Atom-Elektronenhülle. Die (potentielle)
Energie kernferner Elektronen ist größer als die Energie kernnaher Elektronen. Deshalb
lassen sich kernferne Elektronen („Leuchtelektronen“) leichter, d. h. mit weniger Energie-
aufwand aus der Elektronenhülle herauslösen. Mit anderen Worten, näher am Atomkern
befindliche Elektronen sind stärker an den Atomkern gebunden als kernferne. Demzufolge
sind für die Absorption und Emission elektromagnetischer Strahlung im sichtbaren Bereich
(Licht, Photonen vergleichsweise niedriger Energie) die äußeren Schalen der Elektronenhülle
der Atome verantwortlich.

• Das Periodensystem der Elemente besteht aus acht Hauptgruppen und sieben
Perioden. Im Schalenmodell der Atom-Elektronenhülle entspricht jede neue Periode
einer zusätzlichen Schale. Elemente der ersten Periode besitzen also nur eine Schale, die
K-Schale, Elemente der zweiten Periode besitzen zwei Schalen, die K-Schale und die
L-Schale, usw. Die siebente und letzte Periode besitzt demzufolge sieben Schalen: K-, L-,
M-, N-, O-, P- und Q-Schale. In die innerste Schale, die K-Schale, passen maximal nur
zwei Elektronen. In alle anderen Schalen passen maximal acht Elektronen (Oktettregel).
Betrachtet werden hierbei die Atome der Elemente in ihrem Grundzustand, d. h. im
Zustand geringstmöglicher Energie, also nicht in irgendeinem angeregten und schon
gar nicht im ionisierten Zustand.

• Den Schalen entsprechen bestimmte Energiebereiche, wobei die Schalenenergie prin-
zipiell von der innersten (K-Schale) zur äußersten (Q-Schale) ansteigt. Allerdings
überlappen sich die Energiebereiche der Schalen ab der M-Schale (ab der 3. Scha-
le) aufwärts. So befinden sich die fünf 3d-Orbitale der M-Schale auf einem höheren
Energieniveau als das 4s-Orbital der N-Schale.

• Die Besetzung der Schalen mit Elektronen erfolgt auf bestimmte Weise strukturiert in
Unterschalen. Diese Unterschalen werden auch Orbitale genannt, woraus das Orbitalm-
odell der Atom-Elektronenhülle resultiert. Orbitale sind die Raumbereiche, in denen
sich Elektronen mit 95%iger Wahrscheinlichkeit „aufhalten“. Orbitale repräsentieren Lö-
sungen

(
Wahrscheinlichkeitswellenfunktionen Ψ(r⃗ )

)
der Schrödinger-Gleichung, denn

|Ψ |2 ist die Wahrscheinlichkeitsdichte und somit ein Maß für die Wahrscheinlichkeit,
ein Elektron zu einer bestimmten Zeit an einem bestimmten Ort anzutreffen.
Aber Achtung!
Wegen der Heisenberg’schen Unschärferelation besitzen die Aufenthaltsbereiche der
Elektronen der jeweiligen Orbitale keine feste bzw. keine scharfe Grenze.
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• Orbitale entsprechen quantenmechanischen Zuständen der Elektronen und werden
durch vier Quantenzahlen charakterisiert: Hauptquantenzahl n, Neben- oder Drehim-
pulsquantenzahl l, Magnetquantenzahl m und magnetische Spinquantenzahl ml oder
auch s .

1. Den sieben Schalen K bis Q (von innen nach außen) werden die
Hauptquantenzahlen n=1 bis n=7 zugeordnet.

2. Die Nebenquantenzahlen (Drehimpulsquantenzahlen, azimutale Quanaten-
zahlen) l sind ganze Zahlen von l = 0 bis l = (n − 1). Sie bestimmen den
Bahndrehimpuls der Elektronen und die (geometrische) Form der Orbitale:

ausgeschrieben Orbitale Nebenquantenzahl Form

sharp s-Orbital l = 0 Kugel
principal p-Orbitale l = 1 Hantel
diffuse d-Orbitale l = 2 gekreuzte Doppelhantel
fundamental f-Orbitale l = 3 Rosette

g-Orbitale l = 4
h-Orbitale l = 5
i-Orbitale l = 6

3. Die Magnetquantenzahl m eines Orbitals kann die ganzen Zahlen von m = −l
bis m = l einschließlich m = 0 annehmen, also

m = −l, −(l − 1), . . . , 0, . . . , (l − 1), l .

Manchmal wird für die Magnetquantenzahl auch das Symbol ml verwendet. Sie
beschreibt die räumliche Ausrichtung, die ein Orbital bezüglich eines äußeren
Magnetfeldes einnimmt und tritt demzufolge nur in Erscheinung bzw. ist nur
messbar, wenn von außen ein Magnetfeld angelegt wird.

4. Der Spin eines Elektrons entspricht gleichsam einem inneren Drehsinn des Elek-
trons, wird deshalb auch Eigen- oder intrinsischer Drehimpuls genannt und besitzt
die Spinquantenzahl s = 1

2 . Bezüglich eines äußeren Magnetfeldes können Elek-
tronen zwei Drehsinne einnehmen, der eine entspricht dem
Spin-up (Symbol ↑) mit der magnetischen Spinquantenzahl ms = +1

2 ,
der entgegengesetze Drehsinn entspricht dem
Spin-down (Symbol ↓) mit magnetischer Spinquantenzahl ms = −1

2 . Wie
die Ausrichtung des Bahndrehimpulses (Magnetquantenzahl m) tritt auch die
Spinausrichtung (magnetische Spinquantenzahl ms) nur bei Vorhandensein ei-
nes äußeren Magnetfeldes in Erscheinung. Manchmal wird für die magnetische
Spinquantenzahl einfach das Symbol s verwendet.

• Leider existiert keine mathematische Formel zur Ermittlung der Elektronenkonfiguration
der Atome. Es gibt nur die folgenden Regeln für die sukzessive Besetzung der Schalen
und Orbitale mit Elektronen, wobei man vom niedrigsten Energieniveau des einen
Elektrons des Wasserstoffatoms ausgeht und dann die Besetzung mit zunehmender
Höhe der Energieniveaus der Elektronen der folgenden Elemente fortsetzt. Entscheidend
für die Besetzung ist also nicht die ansteigende Ordnungszahl der Elemente sondern
die Zunahme der Höhe der Energieniveaus.
Aufbauprinzip :
Jedes neu hinzugefügte Elektron „sucht sich“ den Zustand geringster Energie.
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Hund’sche Regel1 :
Orbitale gleicher Energie werden immer nacheinander zuerst einzeln, d. h. mit nur
einem Elektron besetzt. Dabei haben diese ungepaarten Elektronen alle den gleichen
Spin. Erst danach erfolgt die Doppelbesetzung.
Pauli’sches Ausschließungsprinzip (Pauli-Verbot) :
In einem Atom können sich niemals zwei Elektronen in demselben quantenmechanischen
Zustand befinden. Sie müssen sich immer wenigstens in einer Quantenzahl unterscheiden.
Die Anwendung dieser drei Regeln führt zum Madelung-Schema der Elektronenkon-
figurationen der Elemente

• Gemeinsam haben Aufbauprinzip, Hund’sche Regel und Pauli-Verbot zur Folge, dass
Orbitale höchsten mit zwei (gepaarten) Elektronen unterschiedlichen Spins besetzt
werden können.
So besitzen die Elemente der zweiten Nebengruppe die K-Schale (n = 1) und die L-
Schale (n = 2) . In der K-Schale gibt es nur eine Unterschale, das 1s-Orbital (n = 1, l =
0) . In der L-Schale gibt es zwei Unterschalen, nämlich das 2s-Orbital (n = 2, l = 0)
und die 2p-Unterschale (n = 2, l = 1) .
Die 2p-Unterschale wiederum besteht aus den folgenden drei 2p-Orbitalen :

2px-Orbital (n = 2, l = 1, m = 1) ,
2py-Orbital (n = 2, l = 1, m = −1) ,
2pz-Orbital (n = 2, l = 1, m = 0) .

Beispielsweise hat Stickstoff mit der Ordnungszahl 7 die
Elektronenkonfiguration

1s2 2s2 2p3 ⇒


2 Elektronen im 1s-Orbital bzw. in der 1s-Unterschale ,
2 Elektronen im 2s-Orbital bzw. in der 2s-Unterschale ,
3 Elektronen in der 2p-Unterschale .

Wie man sieht, sind hierbei die hochgestellten Zahlen keine Exponenten sondern
die Anzahl der Elektronen, mit denen die entsprechende Unterschale besetzt ist. 3
Elektronen in der 2p-Unterschale des Stickstoffatoms heißt, das die drei 2p-Orbitale
2px, 2py und 2pz jeweils mit nur einem Spin-up-Elektron besetzt sind.

• Alle Orbitale einer bestimmten Unterschale, d. h. alle Orbitale mit gleicher
Hauptquantenzahl n und zusätzlich gleicher Nebenquantenzahl l besitzen
das gleiche Energieniveau und können doppelt besetzt sein. Dieser Sachverhalt
führt zu der folgenden Tabelle:

Unterschale 2l + 1 Orbitale maximale Elektronenzahl
auf gleichem Energieniveau

s ⇒ l = 0 1 s-Orbital 2
p ⇒ l = 1 3 p-Orbitale 6
d ⇒ l = 2 5 d-Orbitale 10
f ⇒ l = 3 7 f-Orbitale 14
g ⇒ l = 4 9 g-Orbitale 18
... ⇒

...
...

...
...

1In der Physik werden vier Hund’sche Regeln verwendet, insbesondere wenn der Gesamtdrehimpuls J
eine Rolle spielt.
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Die Unterschalen der Elektronenhüllen von Atomen sind bezüglich ihrer
Energieniveaus entartet. Man spricht von Entartung eines quantenmechanischen
Systems wie z. B. einer Unterschale, wenn zwei oder mehr

Zustände (linear unabhängige Eigenzustände wie z. B. die Orbitale)
zum selben

Messwert (Eigenwert einer Observablen wie z. B. der Energie)
existieren.2 So existieren beispielsweise in der d-Unterschale fünf d-Orbitale gleicher
Energie bzw. mit dem gleichen Energieniveau der Elektronen, wobei jedes dieser fünf
Orbitale dem Pauli-Verbot entsprechend mit zwei Elektronen+ unterschiedlichen Spins
besetzt werden kann. In der d-Unterschale können sich also maximal zehn Elektronen
gleicher Energie aber mit verschiedenem Satz an Quantenzahlen aufhalten. Demzufolge
ist die d-Unterschale 10-fach entartet, d. h. sie besitzt den Entartungsgrad bzw. den
Entartungsfaktor 10.3

• Die Elektronen in der äußersten Schale (Valenzschale) eines Atoms heißen
Valenzelektronen. Wie bereits dargestellt besitzt beispielsweise Sticktstoff
fünf Valenzelektronen: zwei Elektronen im 2s-Orbital und insgesamt drei Elektronen
in den 2p-Orbitalen 2px, 2py und 2pz . Weil sich die Elektronen der äußersten Schale
leichter durch elektrodynamische Wechselwirkungen beeinflussen lassen, sind die Valen-
zelektronen wesentlich für die chemischen Eigenschaften der Elemente verantwortlich.
Die äußersten Schalen der Edelgase sind mit acht Elektronen voll besetzt: zwei Elek-
tronen im s-Orbital und insgesamt sechs Elektronen in den drei p-Orbitalen px, py
und pz . Diese Elektronenkonfiguration mit vollständiger Besetzung aller Schalen heißt
Edelgaskonfiguration. Edelgase sind chemisch besonders stabil. Sie kommen deshalb
nicht in Molekülform sondern nur atomar vor.

2Man geht mit dem Entartungsbegriff relativ salopp um. So spricht man auch von entarteten Eigenwerten
(Messwerten) und entarteten Zuständen (Eigenzuständen).

3Siehe: Franz Schwabl, Quantenmechanik (QM I), 6. Auflage, Springer-Verlag, Berlin, Heidelberg, New York,
2002, Tabelle 13.3. Entartungsgrad der ersten Schalen, Seite 252.
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3.2 Einstein-Koeffizienten und Übergangswahrscheinlichkeiten

Wir betrachten im Folgenden ein (stationäres) System aus N Teilchen bzw. N Atomen
im thermodynamischen Gleichgewicht mit einem elektromagnetischen Strahlungsfeld
(Photonenfeld, Photonengas oder auch Vakuumfeld) bei konstanter Temperatur T und mit
konstantem Volumen V . Ein sich daraus ergebendes praktikables Modell zur Herleitung
der Einstein-Koeffizienten mit den entsprechenden Schlussfolgerungen sind N Atome im
Innern eines Hohlraumresonatars. Dieses Modell ermöglicht uns die Verwendung der sog.
Maxwell-Boltzmann-Verteilung und des Planck’schen Strahlungsgesetzes:4

Im Wellenbild wird das Photonenfeld innerhalb des Hohlraumresonators durch optische
Eigenschwingungen bestimmter Frequenz ν dargestellt. Diese Eigenschwingungen werden
auch Moden genannt und lassen sich durch stehende Wellen veranschaulichen. Die Moden
können quantenmechanisch als harmonische Oszillatoren mit der Energie

En =
(
n+ 1

2

)
hν , n = 0, 1, 2, 3, . . . (6)

angesehen werden. Dabei ist n die Anzahl der Photonen in der betrachteten Mode. Im
thermodynamischen Gleichgewicht ist die mittlere Anzahl n der Photonen pro Mode gleich
dem Bose-Faktor:

n = 1

e
hν

kbT − 1
.

Im Gegensatz zum klassischen harmonischen Oszillator besitzt der quantenmechanische
harmonische Oszillator und somit auch jede Mode für n = 0 die Grundzustands- oder
Nullpunktsenergie E0 = 1

2 hν . Und aus (6) folgt, dass diese „Nullpunktsschwingungen“
für alle zulässigen Werte von ν existieren.

• Maxwell-Boltzmann-Verteilung
Die klassische Maxwell-Boltzmann-Verteilung besagt, dass in einem System aus N
freien Teilchen bei der Temperatur T im Mittel

Ni = K · e− Ei
kBT

Teilchen jeweils die Energie Ei besitzen. Der Proportionalitätsfaktor K = K(T ) ist
dabei allgemein eine temperaturabhängige Konstante.
Berücksichtigen wir jetzt bezüglich der Maxwell-Boltzmann-Verteilung das
(Elektronen-)Schalenmodell der Atome mit dem sich daraus ergebendem Entartungs-
grad gi, d. h. die (maximal mögliche) Besetzungszahl des i-ten Zustands der Energie
Ei mit Elektronen, resultiert das Boltzmann’sche Energieverteilungsgesetz

Ni ∝ gi · e
− Ei

kBT .

Wie man sieht, ist die Anzahl Ni der Atome, die sich im Energiezustand Ei befinden,
proportional zum Entartungsgrad gi. Der Entartungsgrad gi ist also das statistische
Gewicht für die Zustände der Energie Ei .

4Erläuterungen zur Maxwell-Boltzmann-Verteilung und zum Planck’schen Strahlungsgesetz sowie die zuge-
hörigen Herleitungen finden sich u. a. bei Wikipedia und in meinem Skript
Grundlegendes zur Statistischen Physik – Ensembles und Verteilungen in den Abschnitten
11.1 Maxwell-Boltzmann-Verteilung, 13.2 Was ist der Boltzmann-Faktor e−ET /(kBT ), 18.2 Hohlraumresonator
und Mode – Planck’sches Strahlungsgesetz und 18.6 Strahlungsleistung des schwarzen Körpers .
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Mit der kanonischen Zustandssumme Zk =
∑

i gi · e
− Ei

kBT , erhalten wir schließlich die
Wahrscheinlichkeit Pi für das Vorhandensein eines Atoms im Energiezustand Ei wie
folgt:

Pi = Ni(Ei)
N

= gi · e
− Ei

kBT

Zk
.

Für eine bestimmte Temperatur T gilt folglich

Nj

Ni
= K̃ · gj · e

−
Ej

kBT

K̃ · gi · e
− Ei

kBT

= gj

gi
· e− ∆E

kBT , ∆E = Ej − Ei (7)

mit dem
Boltzmann-Faktor e− ∆E

kBT .

• Das Planck’sche Strahlungsgesetz liefert die spektrale Energiedichte u :

u(ν, T ) = 8π hν3

c3 · 1
ehν/(kBT ) − 1

bzw. (8)

u(ω, T ) = ℏω3

π2 c3 ·
1

eℏω/(kBT ) − 1
bzw.

u(λ, T ) = 8π hc
λ5 · 1

ehc/(λkBT ) − 1
,

[
u
]

= (Energie in) J

(Volumen in) m3 · (Frequenz in)
1
s

= J · s
m3 = kg

m · s .

Die spektrale Energiedichte entspricht also der Photonendichte pro Frequenzeinheit.
Die Terme 1

ehν/(kBT )−1 und dessen Äquivalente sind der Bose-Faktor.

Wir werden im Folgenden die spektrale Modendichte G(ν) des Hohlraumresonators
verwenden. Diese hängt mit der spektralen Energiedichte auf folgende Weise zusammen:

u(ν) = 8π ν2

c3︸ ︷︷ ︸
G(ν)

· hν

ehν/(kBT ) − 1︸ ︷︷ ︸
Emod

.

Dabei ist Emod die mittlere Modenenergie und die spektrale Modendichte ist

G(ν) = 8π ν2

c3 . (9)

Schließlich benötigen wir auch noch den Zusammenhang zwischen der spektralen
Energiedichte u und der spektralen Strahlungsintensität

I ′(ν) = 2π hν3

c2
1

e
hν

kBT − 1
= c

4 · u(ν) (10)

des schwarzen Körpers bzw. Hohlraumresonators. Die spektrale Strahlungsintensität
wird in der Optik auch spektrale Bestrahlungsstärke genannt und besitzt die Maßeinheit[

I ′] = (Energie in) J

(Fläche in) m2 · (Zeit in) s · (Frequenz in)
1
s

= J
m2 = kg

s2 .
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Wenden wir jetzt die Maxwell-Boltzmann-Verteilung auf die N Atome eines Gases in
einem Raumbereich an, der die Bedingungen unseres anfangs definierten Modells er-
füllt. Dabei betrachten wir die energetischen Übergänge zwischen dem Grundzustand
und dem angeregten Zustand eines Atoms. Wir sprechen in diesem Fall von einem
Zwei-Niveau-System. Den Grundzustand versehen wir mit dem tiefgestelltem Index 1
und den angeregten Zustand mit dem tiefgestelltem Index 2.

Anmerkung
Man kann statt der Teilchenzahl N in einem festen Volumen auch allgemein die Teilchendichte für die
Herleitungen verwenden, was aber letztlich zu den gleichen Ergebnissen führt.

Die Gesamtanzahl der Atome ist also N = N1 + N2 mit der Anzahl N1 von Atomen im
Grundzustand und der Anzahl N2 von Atomen im angeregten Zustand.
Im thermodynamischen Gleichgewicht ist die Rate der Atome, die durch das Pho-
tonenfeld energetisch angeregt werden, genauso groß wie die Rate der Atome, die ihre
Anregungsenergie wieder abstrahlen. Dabei spielen sich stets gleichzeitig die folgenden, in
der Abbildung 1 veranschaulichten Photonen-Absorptions- und -Emissionsprozesse ab:

• (Induzierte) Absorption
Springen Elektronen mit der Energie E1 auf das höhere Energieniveau E2 beim Über-
gang der zugehörigen Atome vom Grundzustand in den angeregten Zustand durch die
Zufuhr von jeweils einem Photon der Energie hν12 pro Atom, so ist mit (7) die Anzahl
der angeregten Atome im Mittel

N2 = K̃ · g2 · e
− E2

kBT .

Die Anzahl der Atome auf dem 1-ten Energieniveau ist dann N1 = N − N2 .
Und wegen E2 > E1 gilt N2 < N1 . Das Verhältnis N2/N1 wird auch
relative Besetzungszahl genannt:

N1
N2

= K̃ · g1 · e
− E1

kBT

K̃ · g2 · e
− E2

kBT

= g1
g2
· e

E2−E1
kBT , E2 − E1 = hν12 ⇒

N2
N1

= g2
g1
· e

− hν12
kBT ⇔ N2 = g2

g1
·N1 · e

− hν12
kBT . (11)

Die „Triebkraft“ der induzierten Absorption ist das Photenenfeld. Die Übergangsrate,
d. h. die Anzahl der Atome, die dabei pro Zeiteinheit in diesem Fall energetisch angeregt
werden, hängt nämlich von der spektralen Energiedichte u des Photonenfeldes im
Frequenzbereich des Übergangs ab gemäß

dN1
dt ∝ u(ν) .

Außerdem gilt: Je größer die Anzahl N1 der Atome im Grundzustand ist, desto mehr
Atome können in den angeregten Zustand (mit der Elektronenenergie E2) übergehen
gemäß

dN1
dt ∝ N1 .

Mit dem Proportionalitätsfaktor B12 erhalten wir daraus schließlich die
Übergangsrate(

dN1
dt

)
ind.A.

= −B12 ·N1 u ⇒
[
B12
]

= m
kg .
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Abb. 1 Veranschaulichung a) der induzierten Absorption, b) der induzierten Emission und c) der
spontanen Emission am Beispiel des Übergangs zwischen dem Grundzustand des Wasserstoffatoms mit
der Elektronenkonfiguration 1s1 (Elekronenenergie E1) und seinem ersten angeregten Zustand mit der
Elektronenkonfiguration 2s2 (Elektronenenergie E2). Es handelt sich dabei um den Übergang zwischen L-
und K-Schale aus der Lyman-Serie.
Nach Eugene Hecht, Optik, 4. Auflage, Oldenbourg Verlag, München, Wien, 2005, Seite 943.

B12 ist hier der Einstein-Koeffizient für die induzierte Absorption und das Minuszei-
chen steht für die Abnahme von N1 .
Der Term B12 · u besitzt die „Dimension“ 1/s und beschreibt die
Wahrscheinlichkeit für einen Absorptionsübergang pro Zeiteinheit
(also für ein Atom im Grundzustand bei fester Gesamtzahl N der Atome).

• Induzierte Emission
Umgekehrt erfolgt der Übergang der angeregten Atome in den nicht angeregten Aus-
gangszustand bzw. Grundzustand indem die Elektronen des (höheren) 2-ten Energieni-
veaus jeweils ein Photon der Energie hν21 = hν12 abstrahlen und so zurück in das 1-te
Energieniveau fallen.
Die induzierte (stimulierte, erzwungene) Emission setzt genau wie die (induzierte)
Absorption die Einwirkung eines Photonenfeldes voraus und ist der

Umkehrprozess zur Absorption.
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Mit dem entsprechenden Einstein-Koeffizienten B21 erhalten wir somit für den
Übergang vom angeregten Zustand in den Grundzustand die Übergangsrate(

dN2
dt

)
ind.E.

= −B21 ·N2 u ⇒
[
B21
]

= m
kg .

Das aus dem Photonenfeld stammende und die induzierte Emission stimulierende
Photon besitzt ebenfalls die Anregungsenergie hν12 und stellt in der Emissionsbilanz
einen „durchlaufenden Posten“ dar. Es nimmt nämlich dabei ein Photon der gleichen
Energie hν21 = hν12 mit. Außerdem ist es bemerkenswert, dass bei der induzierten
Emission das emittierte Photon

– dieselbe Ausbreitungsrichtung (siehe Abbildung 1 b),
– dieselbe Frequenz,
– dieselbe Phase und
– dieselbe Polarisation

besitzt wie das stimulierende Photon. Im Wellenbild sind demzufolge die stimulierende
einfallende Welle und die induzierte emittierte Welle kohärent. Anders gesagt und
bezugnehmend auf den Hohlraumresonator befindet sich das emittierte Photon in
derselben Strahlungsmode wie die einfallende Welle.
Der Term B21 · u besitzt die „Dimension“ 1/s und beschreibt die
Wahrscheinlichkeit für einen induzierten Emissionsübergang pro Zeiteinheit
(also für ein angeregtes Atom bei fester Gesamtzahl N der Atome).

• Spontane Emission
Bei der spontanen Emission gibt das angeregte Atom völlig statistisch und unabhängig
vom Photonenfeld ein Photon der Anregungsenergie hν21 = hν12 mit zufälliger Phase,
zufälliger Polarisation sowie beliebiger Ausbreitungsrichtung ab und fällt dabei in
seinen Grundzustand zurück. Die Übergangsrate bei der spontanen Emission hängt
demzufolge nur von der Anzahl N2 angeregter Atome ab gemäß(

dN2
dt

)
sp.E.

= −A21 ·N2 ⇒
[
A21
]

= 1
s .

Dabei ist A21 der Einstein-Koeffizient der spontanen Emission.
Der Einstein-Koeffizient A21 besitzt die „Dimension“ 1/s und beschreibt die
Wahrscheinlichkeit für einen spontanen Emissionsübergang pro Zeiteinheit
(also für ein angeregtes Atom).
Das aber bedeutet, dass die mittlere Dauer, bis ein angeregtes Atom spontan (ohne
äußere Einwirkung) in den Grundzustand übergeht, durch den Kehrwert von A21
bestimmt wird. Diese (mittlere) Lebensdauer eines angeregten Zustands ist also

τ = 1
A21

.

Die Lebensdauer τ eines angeregten Zustands unterliegt der Heisenberg’schen Unschär-
ferelation gemäß

Γ · τ = Γ

A21
= ℏ

mit der Energieniveaubreite (Spektrallinienbreite) Γ (siehe Abschnitt 6.1.2).
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Quantenelektrodynamisch betrachtet ist die Ursache der spontanen Emission die Null-
punktsenergie. Und die Ursache der Nullpunktsenergie wiederum ist die Heisenberg’sche
Unschärferelation. Die Energie-Zeit-Unschärfe erlaubt nämlich einer Mode innerhalb
eines kurzen Zeitintervalls in einen angeregten Zustand und sofort wieder zurück in
den Grundzustand zu springen. Bei diesen sog. Vakuumfluktuationen werden virtuelle
Photonen emittiert, welche angeregte Atome zu „spontanen“ Übergängen veranlassen
können. Insofern kann man die spontane Emission als eine von Vakuumfluktuationen
induzierte Emission betrachten. Und weil die Vakuumfluktuationen statistischer Natur
sind, ist folglich auch die spontane Emission statistischer Natur.

Während die Boltzmann-Verteilung von der Temperatur abhängt, sind die drei Einstein-
Koeffizienten stoffspezifische Konstanten und hängen demzufolge nicht von äußeren
Faktoren wie beispielsweise der Temperatur ab.
Im thermodynamischen Gleichgewicht muss die Gesamtemissionsrate stets gleich der Ab-
sorptionsrate sein. Das bedeutet, dass sowohl die Anzahl der angeregten Atome als auch die
Anzahl der Atome im Grundzustand zeitlich konstant ist. Wir erhalten demzufolge

N1(t) = N2(t) = const ⇒ dN1
dt = − dN2

dt = 0

mit
dN1
dt =

(
dN1
dt

)
ind.A.

−
(

dN2
dt

)
ind.E.

−
(

dN2
dt

)
sp.E.

= −B12 ·N1 u+B21 ·N2 u+A21 ·N2 = 0

und
dN2
dt =

(
dN2
dt

)
ind.E.

+
(

dN2
dt

)
sp.E.

−
(

dN1
dt

)
ind.A.

= −B21 ·N2 u−A21 ·N2 +B12 ·N1 u = 0 .

Durch einfache Äquivalenzumformung resultiert daraus schließlich

A21 ·N2 +B21 ·N2 u = B12 ·N1 u ⇔ N2
N1

= B12 · u
A21 +B21 · u

. (12)

Aufgrund der Maxwell-Boltzmann-Verteilung ist im thermodynamischen Gleichgewicht

N2 < N1 ⇒ N2
N1

< 1 .

Wie man an (12) erkennt, ist deshalb die Absorptionwahrscheinlichkeit kleiner als die (Gesamt-
)Emissionswahrscheinlichkeit gemäß

B12 · u < A21 +B21 · u .

Dass trotz kleinerer Absorptionswahrscheilichkeit die Absorptionsrate gleich der
Emissionsrate ist, wird also durch die größere Teilchenzahl N1 im Grundzustand gewährleistet.

Im thermodynamischen Gleichgewicht verhalten sich Teilchenzahl und zugehörige Übergangs-
wahrscheinlichkeit der verschiedenen Energieniveaus zueinander umgekehrt proportional.
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Gleichsetzen von (12) mit (20) und Auflösen nach u liefert
N2
N1

= B12 · u
A21 +B21 · u

= g2
g1
· e

− hν12
kBT ⇔

u = u(ν) = A21
B21
· 1

B12
B21
· g1

g2
· e

hν
kBT − 1

. (13)

Der Koeffizientenvergleich von (13) mit dem Planck’schen Strahlungsgesetz (8)

u(ν, T ) = 8π hν3

c3 · 1
ehν/(kBT ) − 1

zeigt, dass sich (13) durch die gleichzeitige Anwendung der Beziehungen

A21 = 8π hν3

c3 B21 = G(ν) · hν ·B21 (14)

und

B12 · g1 = B21 · g2 ⇔ B21 = g1
g2
B12 (15)

in (8) überführen lässt. Diese beiden Beziehungen beschreiben die Zusammenhänge zwischen
den Einstein-Koeffizienten und gelten für alle Frequenzen ν und alle Temperaturen T . Bei
gleichen statistischen Gewichten (Entartungsgraden) g1 und g2 resultiert aus (15)

g1 = g2 ⇒ B21 = B12 = B . (16)

In diesem speziellen Fall sind induzierte Emission und induzierte Absorption gleich wahr-
scheinlich gemäß B · u(ν) für einen Übergang pro Zeiteinheit.

Betrachten wir jetzt das Verhältnis von induzierter Emission zu spontaner Emission unter
Berücksichtigung der spektralen Modendichte G(ν) = 8π ν2

c3 (9) . Mit den Wahrscheinlichkeit
Wind.E. für die induzierte Emission und Wspont.E. für die spontane Emission erhalten wir
zunächst

Wind.E.

Wspont.E.
= N2 ·B21 · u

N2 ·A21
= B21 · u

A21
=

B21 ·G(ν) · hν · 1

e
hν

kBT − 1
A21

. (17)

Wenn wir jetzt A21 durch (14) ersetzen, so resultiert
Wind.E.

Wspont.E.
= 1

e
hν

kBT − 1
. (18)

Wie man sieht, verschiebt sich das Verhältnis von induzierter zu spontaner Emission mit
zunehmender Temperatur T und bei fester Frequenz ν zugunsten der induzierten Emission,
sodass letztere bei hohen Temperaturen klar überwiegt. Zum gleichen Ergebnis kommen wir,
wenn wir von der spektralen Strahlungsintensität (10)

I ′(ν) = 2π hν3

c2
1

e
hν

kBT − 1
des Hohlraumresonators ausgehen und mit der spektralen Energiedichte u vergleichen. Denn
wie wir unter Berücksichtigung von (14) und mit (16) feststellen können, sind I ′ und u
proportional gemäß

I ′(ν) = c

4 · u(ν) = c

4 ·
8π hν3

c3
1

e
hν

kBT − 1
= c

4 ·
A21
B︸ ︷︷ ︸

= const

· 1

e
hν

kBT − 1
, g1 = g2 .
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3.3 Die Idee zum Funktionsprinzip des Lasers

Bei der Beschreibung der Idee zum Funtionsprinzip des Lasers folgen wir der Argumentation
von M. Alonso und E. J. Finn.5

Das Kunstwort „Laser“ bedeutet
„L ight Amplification by Stimulated Emission of Radiation“.

Sinn und Zweck des Lasers ist es, bei kontinuierlicher Zufuhr von Energie in das System
„Laser“ eine möglichst kontinuierliche Nettoemission von kohärenter elektromagnetischer
Strahlung bzw. von Photonen aus dem System heraus zu erzeugen. Das bedeutet, dass ein
Laser nicht im thermodynamischen Gleichgewicht „arbeitet“.

Sind Strahlung und Materie im thermodynamischen Gleichgewicht, gilt für unser Zwei-
Niveau-System im Hohlraumresonator im Fall g1

!= g2 ⇒ B21 = B12 = B :

Emissionsrate = Absorptionsrate

B21 · u(ν)N2 +A21N2 = B12 · u(ν)N1[
B · u+A21

]
N2 = B · uN1 ⇒

Emissionsrate
Absorptionsrate =

(
1 + A21

B · u

)
N2
N1

= 1 . (19)

Ist die Differenz E2 − E1 = hν zwischen den beiden Niveaus jedoch hinreichend klein, so
folgt mit (17) und (18) aus (19)

Emissionsrate
Absorptionsrate ≈

N2
N1

, (20)

denn
Wspont.E.

Wind.E.
= A21

B · u
= e

hν
kBT − 1 hν→0=⇒ A21

B · u
→ 0 .

Das bedeutet: Wenn im thermodynamischen Gleichgewicht E2 nur geringfügig größer ist als
E1, dann ist N2 nur geringfügig kleiner als N1, wobei die Emissionsrate selbstverständlich
immer noch gleich der Absorptionsrate ist. Eine Netto-Emission bzw. Lichtverstärkung ist
demzufolge im thermodynamischen Gleichgewicht (bis zum Grenzfall N2

N1
= 1) nicht möglich.

Eine Netto-Emission ist also nur im thermodynamischen Ungleichgewicht mit einer
Besetzungsinversion, d. h. mit einer relativen Besetzungszahl N2

N1
> 1 zu erwarten. Aus

(20) folgt dann nämlich

N2 > N1 ⇒ Emissionsrate > Absosrptionsrate .

Diese Besetzungsinversion erreicht man, indem man Atome aus dem Grundzustand (E1) durch
Zufuhr von Energie bzw. Photonen geeigneter Energie in einen angeregten Zustand „pumpt“.
Im Fall des Zweiniveaulasers handelt es sich bei diesem angeregten Zustand gleichzeitig um das
obere Laserniveau (E2). Weil Zweiniveaulaser nicht kontinuierlich arbeiten, muss man dafür
sorgen, dass durch optisches Pumpen kontinuierlich Atome auf ein Niveau angeregt werden, das
oberhalb des oberen Laserniveaus liegt. Im Fall eines Dreinivealasers wäre dies der angeregte
Zustand (E3). Der Übergang der angeregten Atome (E3) in den Grundzustand erfolgt dann
zumindest teilweise über die Zwischenstufe, den metastabilen (langsam zerfallenden) Zustand
(E2) bzw. das obere Laserniveau, wodurch sich dann dauerhaft hohe Besetzungszahlen
N2 > N1 mit der daraus resultierenden Netto-Emission realisieren lassen.

5Marcelo Alonso und Edward J. Finn, Quantenphysik und Statistische Physik, 4. Auflage, Oldenbourg
Verlag, München, Wien, 2005, Seite 577 bis Seite 579.
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4 Brechungsindex und das Verhalten von Licht an
Grenzflächen
• Brechungsindex-Definition:

Für die Ausbreitungsgeschwindigkeit oder exakt die Phasengeschwindigkeit von elektromagnetischen
Wellen wie z. B. Licht gilt:
c0 = const Vakuumlichtgeschwindigkeit, physikalische Fundamentalkonstante ,
c Phasengeschwindigkeit in einem Medium mit dem Brechungsindex n .

Brechungsindex n = c0

c
⇔ c = c(n) = c0

1
n

⇒ c ∝ 1
n
, c0 > c ⇒ n > 1 .

Um die Phasengeschwindigkeit im Vakuum von der in Medien zu unterscheiden, sind verschiedene
Indizierungen üblich. Oft wird die Geschwindigkeit im Vakuum nicht indiziert und die Geschwindigkeit
in Medien gestrichen.

• Reflektion und Transmission ändern nicht die Frequenz f bzw. die Kreisfrequenz ω = 2πf der
einfallenden elektromagnetischen Wellen, auch wenn sich bei der Transmission der Brechungsindex
ändert. Die Änderung des Brechungsindex hat nur eine Änderung der Wellenlänge λ bzw. eine Änderung
der Wellenzahl k = 2π

λ
zur Folge und damit auch eine Änderung der Lichtgeschwindigkeit (im Medium):

c = c0

n
= λ · f = ω

k
, c0 = const , ω = const ⇒

k = k(n) = ω

c0
· n ⇒ k ∝ n .

• Zusammenhang zwischen Permittivität, magnetischer Permeabilität und Brechungsindex:
ε = εr · ε0 mit

ε Permittivität des Mediums,
εr relative Permittivität (Permittivitätszahl) des Mediums, dimensionslos,
ε0 elektrische Feldkonstante (Dielektrizitätskonstante).

µ = µr · µ0 mit

µ magnetische Permeabilität des Mediums,
µr relative magnetische Permeabilität (Permeabilitätszahl) des Mediums, dimensionslos,
µ0 magnetische Feldkonstante (magnetische Permeabilität des Vakuums).

Im Vakuum gilt εr = µr = 1 . Der Brechungsindex eines Mediums ergibt sich aus seiner Permittivität
und seiner magnetischen Permeabilität wie folgt:

c0 = 1
√
ε0 µ0

c = 1
√
εµ

 ⇒ n = √
εr µr .

• Reflektion:
Licht falle in das Medium I mit dem Brechungsindex n1 ein, treffe dann auf die Grenzfläche zum
Medium II mit dem Brechungsindex n2 und werde dann in das Medium I reflektiert. Allgemein wird
das einfallende Licht nicht vollständig reflektiert, sondern es wird bei bestimmten Gegebenheiten
auch durch die Grenzfläche in das Medium II hinein transmittiert, z. B. bei der Lichtbrechung an
Grenzflächen. Betrachten wir den innerhalb des Mediums I auf die Grenzfläche einfallenden Lichtanteil
und den von der Grenzfläche reflektierten Lichtanteil, so ergeben sich für die Reflektion zwei Fälle:
n1 < n2 ⇒ äußere Reflektion,
n1 > n2 ⇒ innere Reflektion.
Die vollständige innere Reflektion nennt man auch kurz Totalreflektion.

• Grenzwinkel αg der Totalreflektion:
Beim Lichtübergang an einer Grenzfläche von einem Medium mit größerem Brechungsindex n1 in ein
Medium mit kleinerem Brechungsindex n2 ,

n1 > n2 ,

wird das Licht mit dem Ausfallswinkel α2 vom Ausfallslot weg gebrochen, wenn der Einfallswinkel α1
den Grenzwinkel der Totalreflektion αg nicht überschreitet.
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Der Grenzwinkel der Totalreflektion ist der zum Ausfallswinkel α2 = 90◦ korrespondierende
Einfallswinkel α1 = αg :

n1 sinα1 = n2 sinα2 = n2 sin 90◦ = n2 ⇔ sinα1 = sinαg = n2

n1
,

Grenzwinkel der Totalreflektion αg = arcsin n2

n1
, n1 > n2 ,

d. h., die Totalreflektion an der Grenzfläche tritt ein bei einem Einfallswinkel α1 entsprechend
sinα1 >

n2
n1

.
• Evaneszentes Wellenfeld – optischer Tunneleffekt (siehe Abschnitt 5).
• Brewsterwinkel:

Der Grenzwinkel der Totalreflektion darf nicht mit dem Brewsterwinkel oder Polarisationswinkel
αB verwechselt werden. Dieser spielt bei der Reflektion eine Rolle, die beim Lichtübergang von einem
optisch dünneren Medium mit n1 in ein optisch dichteres Medium mit n2 auftritt, und muss die
Bedingung

α1 + α2
!= 90◦ ⇔ α1 = αB ⇒ α2 = 90◦ − αB

erfüllen. Dabei ist α1 sowohl der Einfallswinkel als auch der Reflektionswinkel und α2 ist der Bre-
chungswinkel. Das Snellius’sche Brechungsgesetz liefert schließlich

n1 sinα1 = n1 sinαB = n2 sinα2 = n2 sin(90◦ − αB) = n2 cosαB ⇒ n2

n1
= sinαB

cosαB
= tanαB ,

Brewsterwinkel αB = arctan n2

n1
, n1 < n2 .

Trifft unpolarisiertes oder zirkular polarisiertes Licht mit dem Einfallswinkel αB auf eine Glasoberfläche,
so wird nur der senkrecht zur Einfallsebene (Ein-Ausfallsebene) polarisierte Anteil oder die senkrecht zur
Einfallsebene polarisierte Komponente des Lichts reflektiert, weil die Abstrahlung elektromagnetischer
Wellen nur senkrecht zum Dipol und nicht in Dipolrichtung erfolgt.

• Auch bei der Beschreibung der Reflektion von elektromagnetischen Wellen an Metalloberflächen spielt
der Brechungsindex ein Rolle. Allerdings ist er dann komplex, also n(λ) ∈ C, wobei sein Realteil
durchaus kleiner als 1 werden kann.
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5 Evaneszentes Feld – Goos-Hänchen-Verschiebung
Quellen
Wolfgang Demtröder, Springer-Lehrbuch Experimentalphysik 2, Elektrizität und Optik, Springer-Verlag,
Berlin, Heidelberg, New York, 3. Auflage, 2004, Abschnitt 8.4 Wellen an Grenzflächen zwischen zwei Medien,
Seite 228 bis Seite 231.
ChemgaPedia, Optische Grundlagen der Sensorik – Das evaneszente Feld,
http://www.chemgapedia.de/vsengine/vlu/vsc/de/ch/13/vlu/sensorik/opt_grundlagen.vlu/Page/vsc/
de/ch/13/pc/sensorik/optik/evaneszent.vscml.html

Wird beim Übergang des Lichts an der Grenzfläche von einem optisch dichteren Medium I
(mit dem Brechungsindex n1) zu einem optisch dünneren Medium II (mit dem Brechungsindex
n2 < n1) der Grenzwinkel αg der Totalreflexion erreicht bzw. überschritten, so tritt innere
Totalreflexion ein, die kurz Totalreflexion genannt wird.

„ Goos und Hänchen stellten in Experimenten zur Totalreflexion fest, dass der
reflektierte Strahl nicht am Ort des Auftreffens, sondern erst etwas versetzt
zurückläuft.
Mit der Annahme, dass das Licht etwas in das optisch dünnere Medium eindringt,
lässt sich dies mit Hilfe der geometrischen Optik verdeutlichen.

Abb. 1 Goos-Hänchen-Verschiebung
Offenbar fällt das elektromagnetische Feld der totalreflektierten Welle an
der Grenzfläche nicht abrupt auf Null ab. Das folgt aus den Stetigkeits-
bedingungen für das elektromagnetische Feld bei Totalreflexion vom op-
tisch dichteren ins optisch dünnere Medium. Für α1 > αg entsteht eine
entlang der Grenzfläche propagierende Welle, die exponentiell mit der Ein-
dringtiefe gedämpft wird. Diese Welle im optisch dünneren Medium wird als
evaneszentes Feld bezeichnet. Der Abklingfaktor beschreibt, wie weit das
evaneszente Feld in das optisch dünnere Medium eindringt: . . . nur strömt keine
Energie über – durch die Grenzfläche hindurchtretende Energie strömt direkt
wieder zurück. Gibt man der Strahlungsenergie allerdings innerhalb der Eindring-
tiefe die Möglichkeit zur Wechselwirkung, kann sie zurückgehalten werden, z. B.
durch Absorption, Anregung von Fluoreszenz oder durch ein weiteres Prisma
oder einen Wellenleiter, in dem das Licht propagieren kann. Man bezeichnet dies
als abgeschwächte Totalreflexion bzw. frustrierte Totalreflexion.“1

Das evaneszente2 Feld führt also bei Totalreflexion keine Energie über das optisch dünnere
Medium II ab.3

Führen wir jedoch ein drittes und wieder optisch dichteres Medium III (mit dem Bre-
chungsindex n3 > n2) mit seiner Grenzfläche in das evaneszente Feld hinein, dann dringt das
evaneszente Feld in dieses Medium ein und transportiert fortwährend Energie in Form von
elektromagnetischen Wellen (Licht) in das Medium III. Um diesen transmittierten Lichtanteil
reduziert sich der innerhalb des Mediums I reflektierte Lichtanteil, sodass wir dann nicht
mehr von Totalreflexion sprechen, sondern nur noch von frustrierter Totalreflexion – auch
abgeschwächte, verhinderte oder gestörte innere Totalreflexion genannt.4 Folglich lässt sich
das ursprünglich einfallende Licht durch entsprechende optische Vorrichtungen aufteilen in
einen reflektierten und einen transmittierten Anteil (Strahlenteiler).

Die bei frustrierter Totalreflexion auftretende Transmission elektromagnetischer Wellen
vom Medium I – durch die Barriere des optisch dünneren Mediums II – hinein in das

1Zitiert aus: ChemgaPedia, Optische Grundlagen der Sensorik – Das evaneszente Feld.
2Evanescere (lat.) bedeutet verschwinden, sich verflüchtigen.
3Dies gilt auch allgemein für die vollständige Reflexion an Grenzflächen zwischen zwei Medien.
4Im Zusammenhang mit der Transmission bei frustrierter Totalreflexion spricht man auch von einer Aus-

kopplung des evaneszenten Feldes.
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Medium III lässt sich quantenphysikalisch und völlig analog zum Tunneleffekt erklären (siehe
Abschnitt 6.1 in meinem Skript: Quantenmechanik – Schrödinger-Gleichung – Tunneleffekt).
Man bezeichnet dieses Phänomen deshalb auch als den optischen Tunneleffekt.

Bei quantenphysikalischer Interpretation entspricht dort das Medium I dem Gebiet I, das
Medium II dem Gebiet II, d. h. der Potentialbarriere, und das Medium III dem Gebiet III. Im
klassisch nicht erlaubten Gebiet II (Medium II) ist demzufolge der Wellenvektor bzw. dort
die Wellenzahl k komplexwertig, nämlich k ≡ iκ , κ ∈ R. Dadurch wird der komplexwertige
Exponent der einfallenden Welle (Wahrscheinlichkeitsamplitude) beim Übergang in das
Gebiet II reell und es resultiert eine abklingende Exponentialfunktion, völlig analog zum
evaneszenten Feld:5

ΨI(x) = A · eikx ⇒ ΨII(x) = C · ei(iκ)x = C · e−κx .

Die folgende Plausibilisierung des evaneszenten Feldes erfolgt im klassischen Wellenbild.
Für den Betrag von Vektorkomponenten beispielsweise

∣∣E⃗1T
∣∣ schreiben wir kurz E1T . Zur

Vereinfachung und ohne Einschränkung der Allgemeinheit drehen wir das kartesische Koordi-
natensystem so, dass die Einfallsebene des Lichts mit der Ebene := (x, y, z=0) zusammenfällt
und gleichzeitig die Grenzfläche zwischen den Medien I und II in der Ebene := (x, y=0, z)
liegt (siehe Abbildung 2). Folglich und wie wir gleich sehen werden, liegt dann sowohl der
Wellenvektor k⃗i als auch dessen Tangentialkomponente kiT von einfallendem, von reflek-
tiertem und von transmittiertem Licht in der Ebene := (x, y, 0) . Alle Größen im Medium
I indizieren wir mit 1 und alle Größen im Medium II mit 2. Größen, die sich auf das re-
flektierte Licht im Medium I beziehen, versehen wir zusätzlich mit einem Strichindex. Die
Tangentialkomponenten der elektrischen Felder und der Wellenvektoren bzw. Wellenzahlen
erhalten den Index T , weil sie tangential zur Grenzfläche verlaufen.

Abb. 2 Die ebene Welle E⃗1 trifft im Medium I mit dem Brechungsindex n1 > n2 auf die Grenzfläche
zum Medium II mit dem Brechungsindex n2. Die transmittierte ebene Welle ist dann E⃗2. Die Grenzfläche
ist die Ebene, die von den z, x-Koordinatenachsen aufgespannt wird. Die E⃗1-Einfallsebene und die E⃗2-
Ausfallsebene liegen in der Ebene der x, y-Koordinatenachsen, sodass die y-Achse das Einfalls- und das
Ausfallslot bildet. Wie man sieht, sind die Komponenten k1x von k⃗1 und k2x von k⃗2 gleich lang. Hingegen
ist der Wellenvektor k⃗2 kürzer als der Wellenvektor k⃗1, weil die Wellenlänge im Medium mit dem kleineren
Brechungsindex n2 größer ist als die Wellenlänge im Medium mit dem größeren Brechungsindex n1.

5Zur Herstellung der Analogie zwischen elektromagnetischen Wellen und den quantenphysikalischen
Wahrscheinlichkeitsamplituden setzen wir im Exponenten der elektromagnetischen Wellenfunktion t = 0:
E(x, t) = A · ei(kx−ωt) t=0=⇒ E(x, 0) = A · eikx.
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Wir betrachten die drei ebenen Wellen

E⃗1 = A⃗1 · ei(k⃗1r⃗−ω1t) einfallendes Licht ,

E⃗′
1 = A⃗′

1 · ei(k⃗′
1r⃗−ω′

1t) reflektiertes Licht ,

E⃗2 = A⃗2 · ei(k⃗2r⃗−ω2t) transmittiertes bzw. gebrochenes Licht .

Aus der Stetigkeit des E-Feldes an Grenzflächen folgt, dass die Tangentialebene des
E-Feldes auf der Einfallsseite der Grenzfläche (Medium I), also die Summe E1T + E′

1T der
Tangentialkomponenten des E-Feldes von einfallendem und reflektiertem Licht, gleich sein
muss der Tangentialkomponente E2T des E-Feldes auf der Ausfallsseite der Grenzfläche
(Medium II):

E1T + E′
1T = E2T . (21)

Betrachten wir jetzt die drei Tangentialkomponenten in dem festen Raumpunkt r⃗ = 0, so
erhalten wir

EiT = AiT · ei(kiT· 0−ωit) = AiT · e−iωit ⇒

A1T · e−iω1t +A′
1T · e−iω′

1t = A2T · e−iω2t .

Diese Gleichung muss für beliebige Zeiten t gelten und hat deshalb nur dann nichttriviale
Lösungen, wenn

ω1 ≡ ω′
1 ≡ ω2 ≡ ω . (22)

Beim Übergang einer elektromagnetischen Welle in ein Medium mit anderem
Brechungsindex kann sich nur die Wellenlänge ändern. Die Frequenz bzw. Kreis-
frequenz ändert sich dabei nicht.

Die Bedingung (21) gilt für beliebige Punkte r⃗ der Grenzfläche. Deshalb müssen die Phasen
der drei Wellen E1T, E′

1T und E2T in jedem Punkt r⃗ der Grenzfläche gleich sein:

k⃗1r⃗ − ω1t = k⃗′
1r⃗ − ω′

1t = k⃗2r⃗ − ω2t .

Unter Berücksichtigung von (22) folgt daraus die wichtige Beziehung

k⃗1 · r⃗ = k⃗′
1 · r⃗ = k⃗2 · r⃗ . (23)

Da der Wellenvektor k⃗1 in der Einfallsebene, d. h. in der (x, y, 0)-Ebene liegt und r⃗ in der
Grenzfläche, d. h. in der (x, 0, z)-Ebene, erhalten wir in Komponentendarstellung

k⃗1 = k1xe⃗x + k1ye⃗y , r⃗ = xe⃗x + ze⃗z . (24)

Und weil die Richtungen der Wellenvektoren k⃗′
1 und k⃗2 noch unbekannt sind, machen wir

den allgemeinen Ansatz

k⃗′
1 = k′

1xe⃗x + k′
1ye⃗y + k′

1ze⃗z ,
(25)

k⃗2 = k2xe⃗x + k2ye⃗y + k2ze⃗z .

Einsetzen von (24) und (25) in (23) liefert die Gleichung

k1xx = k′
1xx+ k′

1zz = k2xx+ k2zz .
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Diese Gleichung muss für beliebige Werte x und z der Grenzfläche gelten, woraus folgt:

k′
1z = k2z = 0 ⇒

k1x = k′
1x = k2x . (26)

Die Wellenvektoren der einfallenden, der reflektierten und der gebrochenen Welle
liegen in der Einfallsebene.

Der Abbildung 2 entnehmen wir

k1x = |k⃗1| · sinα1 = k1 · sinα1 = n1
ω

c0
· sinα1 , (27)

k′
1x = |k⃗′

1| · sinα′
1 = k′

1 · sinα′
1 = n′

1
ω

c0
· sinα′

1 ,

k2x = |k⃗2| · sinα2 = k2 · sinα2 = n2
ω

c0
· sinα2 . (28)

Mit (26) folgt daraus einerseits

k1x = k′
1x ∧ n1 = n′

1 ⇒ n1
ω

c0
· sinα1 = n1

ω

c0
· sinα′

1 ⇒

sinα1 = sinα′
1 ⇒ α1 = α′

1 , Einfallswinkel gleich Reflexionswinkel

und andererseits
k1x = k2x ⇒ n1

ω

c0
· sinα1 = n2

ω

c0
· sinα2 ⇒

Snellius’sches Brechungsgesetz n1 · sinα1 = n2 · sinα2 .

Der Betrag des Wellenvektors k⃗2 der transmittierten Welle E⃗2 ist

|k⃗2| = k2 = n2
ω

c0
=
√
k2

2x + k2
2y .

Quadrieren dieser Gleichung und Umstellung nach k2
2y ergibt

k2
2y =

(
n2

ω

c0

)2
− k2

2x .

Setzen wir jetzt gemäß (26) und (27) k2
2x = k2

1x ein, so erhalten wir die Funktion k2y(α1),
also die Abhängigkeit der y-Komponente des Wellenvektors der transmittierten Welle vom
Einfallswinkel:

k2
2y =

(
n2

ω

c0

)2
−
(
n1

ω

c0

)2
· sin2 α1 =

(
n2

ω

c0

)2

︸ ︷︷ ︸
= k2

2

·
(

1− n2
1
n2

2
sin2 α1

)
.

Der erste Faktor k2
2 auf der rechten Seite dieser Gleichung ist positiv. Wie aber verhält sich

der zweite Faktor in Abhängigkeit vom Einfallswinkel α1?
Wenn der Einfallswinkel α1 gleich dem Grenzwinkel der Totalreflexion αg ist, also

sinα1 = sinαg = n2
n1

⇒ sin2 α1 = n2
2
n2

1
,
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verschwindet der zweite Faktor, sodass, wie für αg zu erwarten war, k2y = 0 resultiert. Wenn
aber der Einfallswinkel größer ist als der Grenzwinkel der Totalreflexion, also

sinα1 > sinαg ⇒ sin2 α1 >
n2

2
n2

1
,

so wird
n2

1
n2

2
sin2 α1 > 1

und der zweite Faktor wird negativ:(
1− n2

1
n2

2
sin2 α1

)
:= −β2 < 0 .

Daraus folgt für die y-Komponente von k⃗2:

k2
2y =

(
n2

ω

c0

)2

︸ ︷︷ ︸
= k2

2

·(−1) ·
(
n2

1
n2

2
sin2 α1 − 1

)
︸ ︷︷ ︸

= β2

⇒

k2y = ± k2 · i ·

√
n2

1
n2

2
sin2 α1 − 1︸ ︷︷ ︸

= β

,

k2y = ± ik2β für α1 > αg . (29)

Jetzt setzen wir die positive Lösung von (29) in die transmittierte ebene Welle E⃗2 ein:

E⃗2 = A⃗2 · ei(k⃗2r⃗−ωt) = A⃗2 · ei(k2x·x+k2y ·y−ωt) = A⃗2 · ei(k2x·x+ik2β·y−ωt) ⇒

evaneszentes Feld E⃗2 = A⃗2 · e−βk2·|y|︸ ︷︷ ︸
Dämpfung

· ei(k2x·x−ωt)︸ ︷︷ ︸
Oszillation

, α1 > αg .

Wie man sieht, oszilliert das evaneszente Feld in x-Richtung und mit der Zeit. Es ist also
eine sich längs der Grenzfläche ausbreitende Longitudinalwelle und wird deshalb auch
evaneszente Welle genannt. Gleichzeitig wird das evaneszente Feld in y-Richtung exponentiell
gedämpft, d. h., das transmittierte Feld „verflüchtigt“ sich exponentiell mit zunehmendem
Abstand |y| von der Grenzfläche.

Abschließend berechnen wir aus dem Dämpfungs- oder Abklingfaktor den Abstand |y| für
die Abschwächung von E-Feld und Intensität auf 1/e ≈ 1/3 der ursprünglichen Größe:6

E-Feld:

e−βk2·|y| != 1
e ⇒ ln

(
e−βk2·|y|

)
= −βk2 · |y| = ln e−1 = −1 ⇒ |y| · βk2 = 1 ⇔

|y(E/e)| = 1
k2β

.

Die Intensität I einer ebenen Welle ist proportional zum Betragsquadrat des E-Feldes:

I ∝
(
A2 · e−βk2·|y|

)2
⇒ e−2βk2·|y| != 1

e ⇒

|y(I/e)| = 1
2k2β

.

6 e = 2, 718 . . .
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Beispiel

Wie groß ist der Abstand |y(I/e)| bei einer Glasplatte in Luft für grünes Licht?

c0 = 3 · 108 m s−1 ,

f = 600 THz = 6 · 1014 s−1 (grünes Licht) ⇒

ω = 2π · 6 · 1014 s−1 ,

n1 = 1, 5 (z. B. Glas) ,
n2 = 1, 0 (Vakuum oder näherungsweise Luft) ,
α1 = 75◦ ⇒ sinα1 ≈ 0, 966 ⇒ sin2 α1 ≈ 0, 93 ,
αg ≈ 42◦ ⇐ sinαg = n2/n1 = 1/1, 5 = 0, 6 .

|y(I/e)| = 1
2k2β

= 1

2 n2ω
c0

√
n2

1
n2

2
sin2 α1 − 1

≈ 1

2 1·2π·6·1014 s−1

3·108 m s−1

√
1,52

12 0, 93 − 1
,

|y(I/e)| ≈ 3, 8 · 10−8 m = 38 nm .

Der Abstand von der Glasplatte, bei dem die Lichtintensität bzw. die Intensität des evaneszenten Feldes
näherungsweise auf 1/3 der ursprünglichen Intensität abgefallen ist, beträgt in diesem Fall ca. 38 nm. Dieser
Abstand ist ungefähr eine Größenordnung kleiner als die Wellenlänge des verwendeten Lichts.

Abb. 3 Goos-Hänchen-Verschiebung ∆x bei frustrierter bzw. abgeschwächter Totalreflexion. Gelegentlich
wird D = ∆x cosα1 als Goos-Hänchen-Effekt bezeichnet.

Weil das Feld des einfallenden Strahls trotz Totalreflexion ein wenig in das Medium II eindringt,
verlagert sich der Reflexionspunkt ebenfalls von der Grenzfläche ein wenig in das Medium
II hinein. Er liegt dann konventionsgemäß etwa in der Ebene, in der die Feldstärke auf 1/e
abgefallen ist. Der reflektierte Strahl durchdringt dann aber die Grenzfläche näherungsweise
um eine Strecke ∆x, die Goos-Hänchen-Verschiebung, gegenüber dem einfallenden Strahl
versetzt (siehe Abbildung 3):

∆x ≈ 2 · |y(E/e)| · tanα1 = 2 1
k2 β

tanα1 . (30)
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Für k2 schreiben wir

k2 = ω

c0
· n2 = 2πf

c0
· n2 = 2πn2

λ0
⇔ 1

k2
= λ0

2πn2
,

wobei λ0 die zur Frequenz f gehörende Vakuumwellenlänge ist. Außerdem formen wir den
Term β zur Vereinfachung noch etwas um:

β =

√(
n1
n2

)2
sin2 α1 − 1 =

√√√√(n1
n2

)2
[

sin2 α1 −
(
n2
n1

)2
]

= n1
n2

√
sin2 α1 −

(
n2
n1

)2
.

Damit ist

1
k2 β

= λ0
2πn2

· 1
n1
n2

√
sin2 α1 −

(
n2
n1

)2 = λ0

2πn1

√
sin2 α1 −

(
n2
n1

)2 .
Dies setzen wir in (30) ein und erhalten so die

Goos-Hänchen-Verschiebung ∆x ≈ λ0 · tanα1

πn1

√
sin2 α1 −

(
n2
n1

)2 .

Wie man sieht, ist die Goos-Hänchen-Verschiebung proportional sowohl zur Wellenlänge als
auch zum Einfallswinkel bzw. Reflektionswinkel:

∆x ∝ λ , ∆x ∝ α1 .
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6 Die Kohärenz des Lichts
6.1 Wellenpaket – Wellenzug – Superpositionsprinzip

6.1.1 Teilchenbild

Im Teilchenbild bzw. Photonenbild ist natürlich ausgestrahltes Licht, das durch sponta-
ne Emission entsteht wie beispielsweise das thermische Licht einer Glühfadenlampe, ein
„Gemisch“ aus Photonen verschiedener Energie und verschiedener Ausbreitungsrichtung.
Photonen sind Bosonen und können quantenphysikalisch in Raum und Zeit als (räumlich
„begrenzte“) Wellenpakete (Wellengruppen) beschrieben werden, die der Heisenberg’schen
Energie-Zeit-Unschärfe gehorchen müssen.

Ein Photon mit der Energie hν in Gestalt eines Wellenpakets beispielsweise ψ(t) oder
E⃗(t) ist die Superposition von unendlich vielen harmonischen Funktionen verschiedener
Periode (deshalb auch die Bezeichnung Wellengruppe) mit der Amplitudenmodulation dieser
Wellengruppe durch eine Einhüllende (z. B. eine Gauß-Funktion oder eine Lorentz-Funktion).
Die Fourier-Transformierte F (ω) des Wellenpakets ist dessen kontinuierliches Frequenz-
spektrum mit der Halbwertsbreite ∆ω um die mittlere Kreisfrequenz ω0 = 2πν0, die an
der Stelle des Maximums der Funktion der Fourier-Transformierten liegt. Jedes Wellen-
paket besitzt demzufolge ein kontinuierliches Frequenzspektrum und an einem festen Ort
die „Lebensdauer“ ∆t. In Übereinstimmung damit und auch in Übereinstimmung mit der
Heisenberg’schen Energie-Zeit-Unschärferelation gilt:
Aus der raumzeitlichen Beschränktheit der Wellenpakete folgt eine Frequenzstreuung und
damit eine natürliche (unvermeidbare) Linienbreite im Frequenzspektrum. Genauer gesagt:
Je länger die Lebensdauer ∆t eines Photons ist, desto schmaler ist sein Frequenzspektrum
bzw. desto kleiner ist die Halbwertsbreite ∆ω und umgekehrt. Je größer ∆t ist, desto schärfer
ist die zugehörige Spektrallinie. Deshalb besitzt das Frequenzspektrum eines Lasers eine
besonders kleine Linienbreite.

6.1.2 Wellenbild

Im Wellenbild ist natürlich ausgestrahltes Licht im Allgemeinen eine Überlagerung von
statistisch (zufällig) verteilten elementaren sinusförmigen Transversalwellenzügen (kurz:
elementaren Wellenzügen) verschiedener mittlerer Kreisfrequenz ω0 = 2πν0, verschiedener
Polarisation, verschiedenem Phasenwinkel ϕ (kurz: verschiedener Phase ϕ) und verschiedener
Lebensdauer ∆t an einem festen Ort entsprechend einer verschiedenen räumlichen Länge
c ·∆t.

Wie Wellenbild und Teilchenbild so sind auch elementare Wellenzüge und Photonen kom-
plementär, das heißt, ein Photon und der ihm entsprechende elementare Wellenzug sind zwei
sich gegenseitig ausschließende Erscheinungsformen derselben physikalischen Realität. Anders
gesagt, je nach Beobachtungsmethode besitzt Licht entweder Teilchen- bzw. Photonencha-
rakter oder Wellencharakter. Dieser Sachverhalt wird auch als Welle-Teilchen-Dualismus
bezeichnet.

Emittiert werden elementare Wellenzüge beispielsweise durch elektronische Übergänge, also
wenn Elektronen einer Strahlungsquelle von einem höheren in ein niedrigeres Energieniveau
springen bzw. wenn Teilchen wie beispielsweise Atome von einem angeregten in einen weniger
angeregten oder in den Grundzustand übergehen. Die Dauer dieser elektronischen Übergänge
bzw. Emissionsvorgänge beträgt etwa 10−10 s bis 10−8 s, liegt also in der Größenordnung
um ∆t = 10−9 s = 1 ns entsprechend einer Länge der elementaren Wellenzüge von etwa
c ·∆t = 30 cm . In Abhängigkeit von der Emissionsdauer und von der Wellenlänge besitzen
dann die elementaren Wellenzüge etwa einhunderttausend bis zu vielen Millionen Perioden.

Die angeregten Zustände besitzen die mittlere Lebensdauer ∆t = τc, die unmittelbar
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zusammenhängt mit der mittleren Lebensdauer der elementaren Wellenzüge.1
Es gilt nämlich: „ Die Breite einer Spektrallinie, die einem gedämpftem Wellenzug des
einzelnen Emissionsaktes entspricht, ist gleich der reziproken Lebensdauer des angeregten
Zustandes. Diese Beziehung gilt ganz allgemein, gleichgültig ob der Strahlungsprozeß durch
Dämpfung oder anders abgebrochen wird.“2 Das heißt aber, dass sich die Halbwertsbreite
∆ω einer Spektrallinie um die mittlere Kreisfrequenz ω0 reziprok verhält zur mittleren
Lebensdauer τ des zugehörigen elementaren Wellenzuges gemäß

τc = 1
∆ω ⇔ ∆ω · τc = 1 . (31)

Diese Beziehung heißt spektrale Kohärenzbedingung und wird oft auch in der schwächeren
Form

∆ω · τc ≲ 2π ⇔ ∆ν · τc ≲ 1

verwendet. Sie erfüllt die Heisenberg’sche Energie-Zeit-Unschärferelation, denn

∆E ·∆t = ℏ∆ω · τc ≥
ℏ
2 ⇒ ∆ω · τc = 1 > 1

2 .

Wir zeigen eine Herleitung der Beziehung (31) nach dem
Springer-Lehrbuch Physik kompakt 3 – Quantenphysik und Statistische Physik

von Gunnar Lindström, Rudolph Langkau und Wolfgang Scobel, 2. Auflage, Springer-Verlag, Berlin, Heidelberg,
New York, 2002, Abschnitt 5.3 Beispiel zur Energie-Zeit-Unschärfe (Resonanz angeregter Atomzustände),
Seite 68 bis Seite 77 :

Ein Atom im angeregten Zustand verhält sich wie ein Resonator. Wir erfassen dessen Zustand durch die
Wellenfunktion bzw. die Wahrscheinlichkeitsamplitude ψ(t), die charakterisiert wird durch die Eigenfrequenz
ω0 des Zustands und durch die Dämpfung bei spontaner Emission von elektromagnetischer Energie
∆E = ℏ∆ω in „Gestalt“ eines Photons. Erfolgt diese Emission ab dem Zeitpunkt t = 0, so beschreibt die
Wellenfunktion die

freie gedämpfte Schwingung ψ(t) = A e− 1
2τc

t eiω0t . (32)
Hierbei ist τc die mittlere Lebensdauer des angeregten Zustands. Die Momentanamplitude der emittierten
elektromagnetischen Strahlung soll proportional zur Wellenfunktion ψ(t) sein, sodass die Intensität I(t) der
Strahlung proportional zur Wahrscheinlichkeitsdichte ψ∗ψ für die Emission eines Photons ist:

I(t) ∝ ψ∗ψ =
(
A e− 1

2τc
t e−iω0t

)
·
(
A e− 1

2τc
t eiω0t

)
= A2 e− 1

τc
t ⇒

I(t) = I0 e− 1
τc

t
. (33)

(33) bedeutet aber auch: Befinden sich N0 Atome zum Zeitpunkt t = 0 im angeregten Zustand, so sind es
zum Zeitpunkt t nur noch N(t) = N0 · e− 1

τc
t und nach Verstreichen der mittleren Lebensdauer des angeregten

Zustands schließlich N(τc) = 1
e ·N0 .

Nach Fourier lässt sich die Wellenfunktion (32) durch Überlagerung von unendlich vielen harmonischen
Schwingungen F verschiedener Frequenz ω, also als Fourier-Integral darstellen:

ψ(t) = 1
2π

∞∫
0

F (ω) eiωt · dω , ω ≥ 0 .

F (ω) ist die Fourier-Transformierte bzw. die Spektralfunktion von ψ(t) und hat die Gestalt

F (ω) =
∞∫

0

ψ(t) e−iωt · dt wegen ψ(t) = 0 für t < 0 .

1Wir verwenden bei τc hier bereits den Index c, weil sich im Abschnitt 6.3 zeigt, dass τc die Kohärenzzeit ist.
2Zitiert aus dem Springer-Lehrbuch Gerthsen Physik, Helmut Vogel, 20. Auflage, Springer-Verlag, Berlin,

Heidelberg, 1999, Abschnitt 12.2.2 Linienverbreiterung, Seite 606.
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Einsetzen von (32) für ψ(t) liefert

F (ω) =
∞∫

0

A e− 1
2τc

t eiω0t e−iωt · dt

= A

∞∫
0

A e−at · dt mit a = 1
2τc

+ i(ω0 − ω) ,

F (ω) = −A 1
a

e−at

∣∣∣∣∞
0

= A
1
a
.

„ Entsprechend der statistischen Interpretation von ψ(t) ist F (ω) die Wahrscheinlichkeitsamplitude für die
Emission der Frequenz ω, F ∗(ω) · F (ω) ist die Wahrscheinlichkeitsdichte, mit der die Frequenz ω emittiert
wird.

Wir benutzen jetzt einen hier nicht hergeleiteten Sachverhalt: Die Wahrscheinlichkeit für die Absorption
eines Photons ℏω ist gleich der Wahrscheinlichkeit für die Emission eines Photons ℏω derselben Frequenz.
Damit wird die Absorptionsintensität für die Anregung des atomaren Niveaus der mittleren Energie E0 = ℏω0
gegeben durch:

I(ω) ∝ F ∗(ω)F (ω)
Und dies muss dann auch gleichzeitig die Streuintensität sein! “3

Die Intensität der emittierten Strahlung ist folglich

I(ω) = b · F ∗(ω)F (ω) = b ·A 1
a∗ ·A 1

a
= bA2

a∗ · a

= C[
1

2τc
− i(ω0 − ω)

][
1

2τc
+ i(ω0 − ω)

] = C[
1

2τc
+ i(ω − ω0)

][
1

2τc
− i(ω − ω0)

] ,
I(ω) = C

(ω − ω0)2 + 1
4τ2

c

.

Für ω = ω0 erhalten wir daraus die Gleichung, in der I(ω) maximal ist und aus der wir die Konstante C
bestimmen können:

I(ω0) = C
1

4τ2
c

⇔ C = I(ω0) · 1
4τ2

c

.

Damit haben wir schließlich die Anregungsfunktion bzw.

Resonanzfunktion I(ω) = I(ω0)

1
4τ2

c

(ω − ω0)2 + 1
4τ2

c

(34)

gefunden. Den halben Wert gegenüber ihrem Maximum I(ω0) besitzt die Resonanzfunktion an den beiden
Stellen

ω1 = ω0 − 1
2τc

und ω2 = ω0 + 1
2τc

:

I(ω) = I(ω0)
1

4τ2
c[(

ω0 − 1
2τc

)
− ω0

]2
+ 1

4τ2
c

= I(ω0)
1

4τ2
c[(

ω0 + 1
2τc

)
− ω0

]2
+ 1

4τ2
c

= I(ω0)
1

4τ2
c

2
4τ2

c

= I(ω0) · 1
2 .

Demzufolge ist die Halbwertsbreite der Resonanzkurve

∆ω = ω2 − ω1 =
(
ω0 + 1

2τc

)
−
(
ω0 − 1

2τc

)
= 1

τc
.

Die Halbwertsbreite ∆ω der Resonanzkurve ist die (spektrale) Linienbreite. Somit lautet die Beziehung
zwischen der Linienbreite und der mittleren Lebensdauer eines angeregten Zustands bzw. der mittleren
Lebensdauer eines elementaren Wellenzuges

∆ω · τc = 2π∆ν · τc = 1 . □

3Zitiert aus: Gunnar Lindström, Rudolph Langkau, Wolfgang Scobel, Springer-Lehrbuch Physik kompakt 3 –
Quantenphysik und Statistische Physik, 2. Auflage, Springer-Verlag, Berlin, Heidelberg, New York, 2002, Seite
72 und Seite 73. Dabei haben wir F (ω) für f(ω) geschrieben.
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Wir können aber die Resonanzfunktion auch als Funktion der Photonenenergie E = ℏω bzw. E0 = ℏω0
betrachten, wenn wir in (34) den Bruchterm mit ℏ2 erweitern und 1

τ2
c

= (∆ω)2 sowie ℏ · ∆ω = Γ setzen. In
Analogie zur Halbwertsbreite ∆ω ist dann Γ die Energieniveaubreite:

I(E) = I(E0)
1

4τ2
c

· ℏ2[
(ω − ω0)2 + 1

4τ2
c

]
· ℏ2

= I(E0)
1
4 (∆ω)2ℏ2

(ℏω − ℏω0)2 + 1
4 (∆ω)2ℏ2 ,

I(E) = I(E0)
1
4 Γ

2(
E − E0

)2 + 1
4 Γ

2
. (35)

(35) entspricht dem Lorentz-Profil bzw. einer Breit-Wigner-Kurve.

Zwei weitere Herleitungen der Beziehung (31) finden sich im Vorlesungsskript von Professor Dieter
Freude, Universität Leipzig 2006 unter https://home.uni-leipzig.de/energy/pdf/freusd2.pdf Abschnitt
2.6 Lebensdauer und natürliche Linienbreite, Seite 14.

Die elementaren Wellenzüge sind definiert durch den elektrischen Feldanteil bzw. die elek-
trische Feldstärke E⃗n, den magnetischen Feldanteil bzw. die magnetische Flussdichte B⃗n,
die Vakuumlichtgeschwindigkeit c0 = |c⃗0 |, den Wellenvektor oder Propagationsvektor k⃗n in
Ausbreitungsrichtung und die Wellenzahl kn = |k⃗n | = 2π

λn
gemäß

c0
k⃗n

kn
= c⃗0 .

Die Feldvektoren eines elementaren Wellenzuges bilden im Vakuum mit dem zugehörigen
Wellenvektor ein orthogonales Rechtssystem in der Reihenfolge

E⃗n
⊥−→ B⃗n

⊥−→ k⃗n
⊥−→ E⃗n .

Im Folgenden unterdrücken wir vereinfachend den magnetischen Feldanteil und betrachten nur
das E⃗-Feld, auch optisches Feld genannt. Außerdem legen wir, wenn nicht anders ausgewiesen,
die Schwingungsebene des E⃗-Feldes in die x, y-Ebene, sodass k⃗ die Richtung der z-Achse
besitzt.

Die elementaren Wellenzüge überlagern sich zum optischen Strahlungs- oder Wellenfeld.
Insofern sind die elementaren Wellenzüge Teilwellen des resultierenden optischen Wellenfeldes.

Nach dem Superpositionsprinzip erhält man die Gesamtfeldstärke E⃗ eines optischen
Wellenfeldes aus den Feldstärken E⃗n und den Amplituden A⃗n der einzelnen elementaren
Wellenzüge mit dem Laufindex n wie folgt:

E⃗
(
r⃗, t
)

=
∑

n

E⃗n =
∑

n

A⃗n

(
r⃗, t
)
· eiϕn , ϕn(r⃗, t) = k⃗n · r⃗ − ωnt .

Anders als in der oft verwendeten symbolhaften Darstellung sind elementare Wellenzüge
selbstverständlich dreidimensionale physikalische Phänomene, die sich im Ortsraum ausbrei-
ten, sich gegenseitig durchdringen und dabei das Wellenfeld E⃗

(
r⃗, t
)

bilden.
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6.2 Kohärenz

Siehe auch: Dr. Wiebke Salzmann, physik.wissenstexte.de, Wissenstexte – Kohärenz.

Kohärent bedeutet zusammenhängend und geht zurück auf die die lateinischen Begriffe
cohaerentia – Zusammenhang bzw. cohaerere – zusammenhängen. Wir schreiben im
Folgenden statt elementare Wellenzüge kurz Wellenzüge. Die Kohärenz ergibt sich aus der
Phasenkorrelation zwischen den Wellenzügen des Lichts. Die Kohärenzbedingung ist eine
konstante Phasenbeziehung bzw. eine konstante Phasendifferenz ∆ϕ einschließlich ∆ϕ = 0
zwischen sich überlagernden Wellenzügen. Man kann jeden Wellenzug für sich genommen als
kohärent (interferenzfähig) betrachten, denn prinzipiell wäre mit einem einzelnen Wellenzug
beispielsweise Interferenz am Doppelspalt möglich.

Wir beginnen unsere Überlegungen mit zwei Zitaten zur Definition der wichtigsten Begriffe:

„ Die Kohärenz bestimmt die Interferenzfähigkeit der Teilwellen. Die Kohärenz wird
immer in Bezug auf eine gewisse Mess- Beobachtungsdauer Tmess definiert. Eine zeit-
lich stationäre Interferenzstruktur kann nur dann beobachtet werden, wenn sich die
Phasenunterschiede ∆ϕ = ϕj(r⃗j , t) − ϕi(r⃗i.t) zwischen beliebigen Teilwellen E⃗i(r⃗i, t)
und E⃗j(r⃗j , t) während der Beobachtungsdauer oder Messdauer Tmess um weniger als
2π ändern. Wenn sich an einem festen Raumpunkt r⃗i = r⃗j die Phasenunterschie-
de ∆ϕ innerhalb Tmess um weniger als 2π ändern, dann nennt man die Teilwellen
zeitlich kohärent. Andererseits, wenn sich Phasenunterschiede ∆ϕ an zwei beliebigen
Orten r⃗i ̸= r⃗j innerhalb Tmess um weniger als 2π ändern, dann nennt man die Teilwellen
räumlich kohärent. Zusammenfassend gilt, dass nur mit kohärenten Teilwellen stationäre
Interferenzmuster beobachtet werden können.“4

„ Eine zeitlich stationäre Interferenzstruktur kann nur dann beobachtet werden, wenn sich die
Phasendifferenzen ∆φ = φj −φk zwischen beliebigen Teilwellen E⃗j , E⃗k im Raumpunkt P (r⃗ )
während der Beobachtungsdauer ∆t um weniger als 2π ändern. Man nennt die Teilwellen
dann zeitlich kohärent . . . .
Die maximale Zeitspanne ∆tc, während der sich Phasendifferenzen zwischen allen im Punkt
P überlagerten Teilwellen um höchstens 2π ändern, heißt Kohärenzzeit . . . .
Ändert sich die räumliche Differenz

∆rφi = φi(r⃗1)− φi(r⃗2)

der Phase φi einer beliebigen Teilwelle E⃗i während der Beobachtungszeit∆t um weniger als 2π,
so heißt das Wellenfeld räumlich kohärent . . . . Die Fläche senkrecht zur Ausbreitungsrichtung,
auf der ∆rϕi = 0 erfüllt ist, heißt Kohärenzfläche Fc .

Als Kohärenzlänge ∆sc = c′ ·∆tc wird die Strecke bezeichnet, die das Licht während der
Kohärenzzeit zurücklegt. Das Produkt aus Kohärenzfläche und Kohärenzlänge ∆sc heißt
Kohärenzvolumen ∆Vc . . . . Nur innerhalb des Kohärenzvolumens können Interferenz-
strukturen beobachtet werden.“5

Anmerkung zum Sprachgebrauch
Man spricht gelegentlich von der Kohärenz einer Lichtquelle, meint dabei aber selbstver-
ständlich die Kohärenz des von dieser Quelle emittierten Lichts.

4Zitiert aus: Prof. Dr. Ursula Keller, ETH Zürich, Quantenelektronik, FS11, Kap 4 Interferenz und Kohärenz,
Abschnitt 4.1 Definition von Interferenz und Kohärenz, Seite 1.

5Zitiert aus: Wolfgang Demtröder, Springer-Lehrbuch, Experimentalphysik 2 – Elektrizität und Optik, 3.
Auflage, Springer-Verlag, Berlin, Heidelberg, New York, 2004, Seite 295 und Seite 296. Dort wird für die
Kohärenzzeit ∆tc statt τc und für die Kohärenzlänge ∆sc statt lc geschrieben, was ebenfalls üblich ist.
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Man unterscheidet also zwischen zeitlicher Kohärenz (auch longitudinale Kohärenz, räumliche
Longitudinalkohärenz, Längenkohärenz oder englisch longitudinal spatial coherence genannt), die die Spek-
tralverteilung einer Lichtquelle beschreibt und somit ein Maß für die spektrale Reinheit ist,
und räumlicher Kohärenz (auch laterale Kohärenz, räumliche Transversalkohärenz, Winkelkohärenz
oder englisch lateral spatial coherence genannt), die von der räumlichen Ausdehnung der Lichtquelle
abhängt.
Voraussetzungen für die Interferenz zweier Teilwellen sind

• hinsichtlich der Polarisation:
Die E⃗-Felder der Teilwellen müssen am Ort des Interferenzmusters kollinear sein.
Zirkular polarisierte Wellen mit unterschiedlicher Helizität können nicht interferieren.

• hinsichtlich Frequenz und Phase:
Die Teilwellen müssen die gleiche Frequenz besitzen und die Phasendifferenz zwischen
den Teilwellen muss zeitlich konstant sein, was allgemein nur erfüllt ist, wenn die
Teilwellen aus derselben Quelle stammen.

„ Es gilt ganz allgemein: Haben zwei Wellen verschiedene Frequenzen oder ändern sich ihre
Phasenunterschiede mit der Zeit beliebig, so beobachtet man kein stationäres Interferenz-
muster, und die Wellen werden als inkohärent bezeichnet.“6

Kohärenz bedeutet Interferenzfähgigkeit, d. h.
kohärentes Licht ist interferenzfähiges Licht.

Vollständig kohärente und vollständig inkohärente optische Wellenfelder sind Idealisierungen,
weil die dafür erforderlichen Anforderungen an die Quelle physikalisch nicht realisierbar sind:

• Die vollständige Kohärenz erforderte eine punktförmige Quelle (ohne räumliche Aus-
dehnung), die streng monochromatisches Licht emittiert. Die Wellenzüge streng mono-
chromatischen Lichts wären unendlich lang.

• Die vollständige Inkohärenz erforderte eine Quelle mit räumlich unendlich ausgedehnter
Emissionsfläche, von der Licht mit einem unendlich ausgedehnten Frequenzspektrum
emittiert wird. Wellenzüge mit einer unendlichen Frequenzbreite wären unendlich kurz.

Damit wären alle von real existierenden (natürlichen und künstlichen) Lichtquellen emittierten
Wellenfelder genau genommen immer nur partiell-kohärent bzw. teilweise kohärent oder
kurz teilkohärent. Auch kann es kein absolut monochromatisches Licht geben, sondern nur
näherungsweise monochromatisches bzw. quasimonochromatisches.
Wir werden uns im Folgenden mit der üblichen genäherten Graduierung begnügen. So un-
terscheiden wir dann nicht-monochromatisches von monochromatischem Licht. Weiterhin
betrachten wir monochromatisches Licht als ein optisches Wellenfeld, das durch Super-
position von Wellenzügen der gleichen Frequenz entsteht, Laserlicht als monochromatisch
und kohärent und schließlich natürlich erzeugtes Licht als nicht-monochromatisch und
inkohärent. Damit sind alle übrigen Wellenfelder mehr oder weniger stark bzw. schwach
teilkohärent. Im Fall der Teilkohärenz sind die entsprechenden Interferenzmuster nicht so
scharf bzw. kontrastreich ausgebildet wie im Fall der Kohärenz. Wie man sieht, ist der
Übergang von der Kohärenz zur Inkohärenz in der physikalischen Realität fließend.
Zur Orientierung nehmen wir eine Auflistung einiger Wellenfelder hinsichtlich ihrer Kohärenz
vorweg:

6Zitiert aus: Prof. Dr. Ursula Keller, ETH Zürich, Quantenelektronik, FS11, Kap 4 Interferenz und Kohärenz,
Abschnitt 4.1 Definition von Interferenz und Kohärenz, Seite 9.
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• monochromatische ebene Welle kohärent –
zeitlich vollständig, räumlich vollständig,

• nicht-monochromatische ebene Welle partiell-kohärent –
zeitlich partiell, räumlich vollständig,

• monochromatische Kugelwelle kohärent –
zeitlich vollständig, räumlich vollständig,

• nicht-monochromatische Kugelwelle partiell-kohärent –
zeitlich partiell, räumlich vollständig,

• natürlich erzeugtes Licht inkohärent –
zeitlich partiell, räumlich partiell.

Parallele Wellenzüge bilden durch Überlagerung ein optisches Wellenfeld mit ebenen
Wellenfronten (ebene Wellen) und sind räumlich kohärent.

Als Standardbeispiel für kohärentes (vollständig zeitlich und vollständig räumlich kohären-
tes) Licht gilt das Bündel paralleler monochromatischer Lichtstrahlen eines Lasers (siehe
Abbildung 4). Laserlicht entsteht durch induzierte Emission und ist vollständig phasen-
korreliert.

Abb. 4 (Vollständige) Kohärenz des
von einem Laser ausgestrahlten Lichts.

In diesem Fall sind die parallel zueinander verlaufenden Wellenzüge extrem lang und besitzen
nahezu die gleiche Frequenz sowie die gleiche Phase (schwingen also im Gleichtakt), sodass
die Wellenfronten Ebenen senkrecht zur Ausbreitungsrichtung bilden. Derartiges Laserlicht
kommt dem Ideal einer ebenen elektromagnetischen Welle sehr nahe.
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Natürlich ausgestrahltes Licht (siehe Abbildung 5) entsteht durch spontane Emission
und ist inkohärent,

• weil die Zeitabstände zwischen den Emissionen der Wellenzüge statistisch (zufällig,
willkürlich) verteilt sind,
• weil die Wellenzüge verschieden lang sind,
• weil die Wellenzüge verschiedene Frequenzen besitzen, denn natürlich ausgestrahltes

Licht ist nicht monochromatisch,
• weil die Wellenzüge verschieden Phasen besitzen und verschieden polarisiert sind bzw.

weil Phase und Polarisation schwanken und
• weil die Wellenzüge verschiedene Ausbreitungsrichtungen besitzen. Photonen werden

statistisch in alle Richtungen emittiert.

Abb. 5 Von einer Glühfadenlampe na-
türlich ausgestrahltes Licht. Dass Licht
allgemein inkohärent ist, liegt an der dis-
kontinuierlichen Natur der Emissionspro-
zesse.

Von Punktquellen emittierte Wellenzüge sind Kugelwellen und ihre Wellenfronten bilden
Kugelflächen. Das von einer Punktquelle emittierte monochromatische Licht ist kohärent,
also vollständig zeitlich und vollständig räumlich kohärent.

Abb. 6 Veranschaulichung der Kohärenz am Beispiel
einer Punktquelle Q, die monochromatisches Licht
emittiert.
Abbildung nach F. Pedrotti, L. Pedrotti, W. Bausch,
H. Schmidt, 2005.
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Erläuterung von zeitlicher und räumlicher Kohärenz anhand der Abbildung 6 :

• Die zeitliche (longitudinale) Kohärenz
resultiert aus der Phasenkorrelation zwischen den Teilwellen bezüglich unterschiedlicher
Laufzeiten entsprechend unterschiedlicher (räumlicher) Laufstrecken in Ausbreitungs-
richtung dieser Teilwellen und zeigt sich beispielsweise beim Nachweis von Interferenz
mit dem Michelson-Interferometer:
Beim Michelson-Interferometer fungiert der halbdurchlässige Spiegel als Strahlteiler (für
„einen Lichtstrahl“ in Ausbreitungsrichtung). Die Längenänderung eines der beiden In-
terferometerarme verändert in diesem die Lichtlaufzeit, so dass man die Laufzeitdifferenz
zwischen den beiden erzeugten Teilwellen variieren kann. Nach der Wiedervereinigung
der beiden Teilwellen stellt man dann, analog zur Intensitätsverteilung des Interfe-
renzmusters beim Doppelspalt, verschiedene Lichtintensitäten in Abhängigkeit von der
Laufzeitdifferenz fest.
Monochromatisches Licht ist zeitlich kohärent, denn die Summe (Überlagerung)
von jeweils zwei (harmonischen) Wellenzügen E1 und E2 gleicher Kreisfrequenz ω ist
wieder eine harmonische Welle E mit der Kreisfrequenz ω gemäß

E1 + E2 = A1 · sin(ωt+ ϕ1) +A2 · sin(ωt+ ϕ2) = A · sin(ωt+ ϕ) = E .

Und allgemein gilt: Wellenzüge gleicher und im Beobachtungszeitraum konstanter
Frequenz (mit daraus resultierender zeitlich konstanter Phasendifferenz) sind zeitlich
kohärent.

• Die räumliche (transversale) Kohärenz
resultiert aus der Phasenkorrelation zwischen unterschiedlichen räumlichen Punk-
ten im optischen Wellenfeld und zeigt sich beispielsweise bei der Interferenz am
Doppelspalt:
Durch den Doppelspalt erzeugt man aus dem primären Wellenfeld, hier der mono-
chromatischen Kugelwelle, zwei sekundäre Teilwellen der gleichen Frequenz. Fällt
monochromatisches Licht der Frequenz ν = c

λ auf den Doppelspalt, so interferieren
die beiden von den Spalten ausgehenden Sekundärwellen miteinander und bilden in
Abhängigkeit vom Gangunterschied ∆s = QAP1 −QBP1 der Teilwellen ein für den
Doppelspalt charakteristisches Interferenzmuster auf dem Schirm. Der Gangunterschied
zwischen den Teilwellen entspricht der Phasendifferenz ∆ϕ, denn mit dem Spaltabstand
g und dem Richtungswinkel φ zwischen Doppelspalt und Schirm gilt (siehe Abschnitt
19.2 Fraunhoferbeugung im Skript Ausgewählte Themen und Herleitungen aus dem
Physik-Grundstudium, Seite 96)

∆ϕ = 2π
λ
· g · sinφ = k ·∆s .
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6.3 Zur zeitlichen (longitudinalen) Kohärenz – Kohärenzlänge

Die zeitliche Kohärenz ist charakterisiert durch die Korrelation zweier Wellenfelder an ein
und demselben Ort und zu unterschiedlichen Zeiten. Anders gesagt: Wellenzüge sind zeitlich
kohärent, wenn ihre Phasen bzw. Wellenfronten bezüglich eines festen Raumpunktes in
Ausbreitungsrichtung (longitudinal) korreliert sind. Zeitliche Kohärenz von Wellenzügen
oder Wellenfeldern liegt also vor, wenn die Phasendifferenz zwischen ihnen zeitlich konstant
ist.

Dass die vollständige zeitliche Kohärenz genau genommen ein Idealzustand ist, liegt an
der endlichen räumlichen Ausdehnung der Wellenzüge in Ausbreitungsrichtung. Denn an
einem bezüglich der Quelle festen Raumpunkt erscheinen die vorbeilaufenden Lichtwellen
jeweils nur eine begrenzte und allgemein kurze Zeit lang sinusförmig zwischen plötzlich bzw.
zufällig (statistisch) auftretenden Phasenänderungen. Diese Tatsache führt uns direkt zum
Begriff der Kohärenzzeit:
„ Ein einzelner Wellenzug existiert durchschnittlich eine als Kohärenzzeit ∆tc bezeichnete
Zeitspanne lang, die gleich dem Kehrwert der Frequenzbreite ∆ν ist. . . . Die Kohärenzzeit
entspricht effektiv derjenigen Zeitspanne, für die man die Phase der Lichtquelle in einem
gegebenen Punkt des Raumes noch hinreichend genau voraussagen kann.“7

Anders gesagt: Das durchschnittliche Zeitintervall, in dem die Wellenzüge einer Strahlung
bzw. eines Wellenfeldes ununterbrochen und ohne Phasensprung eine Sinuskurve beschreiben,
bezeichnen wir als

Kohärenzzeit ∆t = τc .

Im Sinne der Konsistenz insbesondere mit dem Abschnitt 6.1 verwenden wir für die Kohä-
renzzeit das Symbol τc und nicht ∆tc oder tc.
Je länger die Kohärenzzeit ist, desto ausgeprägter ist die zeitliche Kohärenz des Wellen-
feldes. Den Grad der Korrelation der Phasen an zwei in Ausbreitungsrichtung liegen-
den Punkten bezeichnet man in der englischsprachigen Literatur auch als longitudinal
coherence.
Die Kohärenzzeit beeinflusst das Auftreten bzw. die Beobachtbarkeit von Interferenzmustern
beispielsweise bei der Interferenz am Doppelspalt wie folgt:
„ Wenn es sich . . . um endliche Wellenzüge handelt, könnte am Beobachtungspunkt ein
Wellenzug schon passiert sein, während der zweite noch gar nicht eingetroffen ist. Das kann
sich besonders bei großen Ablenkungswinkeln ereignen, wenn der Gangunterschied groß
und die Länge der Wellenzüge klein ist. Deshalb hat man den Begriff der Kohärenzlänge
eingeführt, der der mittleren Länge der Wellenzüge entspricht.“8

Mit der Lichtgeschwindigkeit c ist dann die

Kohärenzlänge lc = c · τc .

Die Kohärenzlänge ist also die durchschnittliche (räumliche) Länge der Wellenzüge des Wel-
lenfeldes. Anders gesagt: Die Kohärenzlänge ist die räumliche Länge, über die die Teilwellen
eine feste Phasenbeziehung haben.

Veranschaulichung der zeitlichen Kohärenz
Ein Beobachter befindet sich an einem festen Ort im Ruhesystem der Lichtquelle, greift einen
der vorbeiziehenden Wellenzüge heraus und betrachtet die übrigen Wellenzüge des Lichts und

7Zitiert aus: Eugene Hecht, Optik, 4. Auflage, Oldenbourg Verlag, Wien, München, 2005, Seite 901 und Seite
902.

8Zitiert aus: Würzburger Quantenphysik-Konzept. G56 Kohärenzlänge,
https://www.forphys.de/Website/qm/gloss/kohlaenge.html
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zwar senkrecht zur Ausbreitungsrichtung des herausgegriffenen Wellenzuges. Findet er dabei
feste Phasenbeziehungen (Phasendifferenzen) zwischen dem herausgegriffenen Wellenzug und
anderen Wellenzügen, so sind der herausgegriffene und diese anderen Wellenzüge zeitlich
kohärent (siehe Abbildung 7).

Abb. 7 Zeitliche Kohärenz.
Der Beobachter B ruht bezüglich der Licht-
quelle und „sieht“ die Wellenzüge gleicher
Frequenz jeweils mit einer bestimmten zeit-
lich konstanten Phasendifferenz ∆ϕ an sich
vorbeiziehen.

Zusammenfassend und um den Unterschied zur räumlichen Kohärenz zu verdeutlichen, stellen
wir fest:
Besteht in einem bezüglich der Quelle festen Raumpunkt über ein beobachtbares Zeitintervall
Tmess zwischen Wellenzügen eine zeitlich konstante Phasendifferenz, so sind diese Wellenzüge
zeitlich kohärent:

τc > Tmess ⇒ zeitliche Kohärenz, Interferenzmuster beobachtbar ,

τc < Tmess ⇒ zeitliche Inkohärenz, Interferenzmuster nicht beobachtbar .

Wenn die Wellenzüge zu kurz sind, „überlappen“ sie sich ggf. nicht mehr und es kommt
nicht zur Interferenz. Der Idealfall vollständiger zeitlicher Kohärenz würde unendlich lange
Wellenzüge gleicher Frequenz voraussetzen.

Im Wellenfrontenkonzept bedeutet zeitliche Kohärenz den konstanten räumlichen Abstand
zwischen den Wellenfronten in Ausbreitungsrichtung (longitudinal) beim Vorbeilaufen der
Wellenzüge an einem festen Raumpunkt. Alle Wellenzüge mit gleicher Frequenz wie beispiels-
weise bei monochromatischem Licht sind (zumindest partiell) zeitlich kohärent, aber nicht
unbedingt auch räumlich kohärent.
Kurz gesagt:
Wenn Wellenzüge bzw. Teilwellen die gleiche Frequenz und über einen „beobachtbaren“
Zeitraum eine feste Phasenbeziehung (Phasendifferenz) haben, sind sie zeitlich kohärent.

43



Für das Intensitätsspektrum I(ω) bzw. die Intensität der harmonischen Anteile eines Wellen-
zugs der Kreisfrequenz ω0 gilt :

I(ω) = I0

sin
(
ω − ω0

2 · τc

)
ω − ω0

2 · τc


2

. (36)

I0 ist hierbei die Intensität an der Stelle des zentralen Maximums, d. h. an der Stelle der
Spektrallinie mit der Kreisfrequenz ω0. Schreiben wir jetzt(

ω − ω0
)
· τc = ω · τc − ω0 · τc = ϕ− ϕ0 ,

resultiert aus (36)

I(ω) = I0

sin
(
ϕ− ϕ0

2

)
ϕ− ϕ0

2


2

.

Die Gleichung (36) stimmt formal mit der Intensitätsformel

Iφ = I0

 sin
(π
λ

· a sinφ
)

π

λ
· a sinφ

2

(37)

für die Interferenz am Einzelspalt überein (siehe Gleichung (81) im Abschnitt 11.2 Fraunhoferbeugung). Hier
liegt das zentrale Maximum bzw. das Hauptmaximum bei φ = 0 ⇒ sinφ = 0 und das 1. Minimum zu beiden
Seiten des zentralen Maximums liegt bei sinφ = λ

a
, sodass (37) an den Stellen der 1. Minima die Form

Iφ = I0

 sin
(
π

λ
· a · λ

a

)
π

λ
· a · λ

a


2

= I0

[
sinπ
π

]2

= 0 (38)

annimmt. Es gilt also für den Einzelspalt:

∆ϕ = ±π Phasendifferenz zwischen 1. Minimum und zentralem Maximum ,

∆ϕ = 2π = 2π
λ
a sinφ Phasendifferenz zwischen den beiden 1. Minima .

In der Herleitung der Interferenz am Strichgitter bzw. am Einzelspalt im Abschnitt 11.2 a hatten wir für die
Phasendifferenz δ bezüglich des zentralen Maximums bei φ = 0 mit (73) folgendes gefunden:

δ

2π = ∆s
λ

= g sinφ
λ

⇔ δ = 2π
λ

· g sinφ .

Setzen wir diese Phasendifferenz δ in (74) ein, erhalten wir für die vorläufige Amplitudenformel (74) für die
Interferenz am Strichgitter

Aφ = A′
sin
(
N · π

λ
· g sinφ

)
sin
(π
λ

· g sinφ
) = A′ sin

(
N · δ

2
)

sin δ
2

,

sodass aus (77) schließlich

Aφ = A0

sin
(π
λ

· a sinφ
)

π

λ
· a sinφ

= A0
sin δ

2
δ
2

resultiert. Schreiben wir jetzt ϕ0 für die Phase ϕ an der Stelle des zentralen Maximums, so gilt

δ = ϕ− ϕ0
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und (77) wird zu

Aφ = A0
sin ϕ−ϕ0

2
ϕ−ϕ0

2
⇒ Iφ = I0

[
sin ϕ−ϕ0

2
ϕ−ϕ0

2

]2

. □

Für die 1. Minima im Verlauf von I(ω) (siehe Abbildung 18) muss gelten

(ω1 − ω0) · τc

2 = −π ⇔ ω1 = − 2π
τc

+ ω0 ,

(ω2 − ω0) · τc

2 = +π ⇔ ω2 = + 2π
τc

+ ω0 .

Als Breite ∆ω des (zentralen) Hauptmaximums bzw. der Spektrallinie wird üblicherweise
der halbe Abstand zwischen den beiden 1. Minima angenommen, d. h.

1
2 · |ω2 − ω1| = 1

2 ·
4π
τc

= 2π
τc

= ∆ω .

Mit ω = 2πν erhalten wir daraus die spektrale Frequenzbreite ∆ν gemäß

∆ν = 1
τc

⇔ ∆ν · τc = 1 .
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6.4 Zur räumlichen (lateralen) Kohärenz – räumliche Kohärenzlänge

Die räumliche Kohärenz ist charakterisiert durch die Korrelation zweier Wellenfelder an
verschiedenen Orten innerhalb einer zur Ausbreitungsrichtung senkrechten Ebene und zu
einer festen Zeit.

Leicht veranschaulichen lässt sich die räumliche Kohärenz beispielsweise mit der Interferenz
am Doppelspalt (siehe dazu Abbildung 8):

Abb. 8 Abbildung zur räumlichen
Kohärenz aus:
Würzburger Quantenphysik-Konzept.
G56 Kohärenzlänge.

„ Bei einer ausgedehnten Lichtquelle, wie etwa der Sonne, strahlen weit entfernte Atome
vollkommen unabhängig voneinander ihr Licht ab. Die Wahrscheinlichkeit, dass sich die
ausgesandten Wellenpakete nach dem Doppelspalt auf dem Schirm tatsächlich überlappen, ist
also sehr gering. Verkleinert man jedoch die Lichtquelle künstlich durch einen Kohärenzspalt,
dann entsteht Beugung am Einfachspalt mit einem zentralen Maximum. Wo auch immer die
beitragenden Lichtstrahlen herkamen, sie müssen gleichphasig sein, sonst würden sie nicht
zum zentralen Maximum beitragen. Sorgt man jetzt dafür, dass das zentrale Maximum vom
Kohärenzspalt die beiden Spalte eines Doppelspalts gemeinsam ausleuchtet, so ist Doppelspalt-
Interferenz möglich, weil das Licht durch den Kohärenzspalt räumlich kohärent gemacht
wurde (“Sichtbarkeitsbedingung“).“9

„ Die räumliche Kohärenz oder räumliche Transversalkohärenz (engl. lateral spatial cohe-
rence) ist möglicherweise leichter zu verstehen, weil sie eng mit dem Konzept der Wellenfront
zusammenhängt: Befinden sich zu einem bestimmten Zeitpunkt zwei Punkte nebeneinander
auf derselben Wellenfront, so bezeichnet man die Felder in diesen Punkten als räumlich
kohärent.“10

Die räumliche Kohärenz hängt von der räumlichen Ausdehnung der Lichtquelle ab. Im Ver-
gleich zur Wellenlänge λ sehr ausgedehnte Lichtquellen sind in der Regel räumlich inkohärent,
weil in diesem Fall zwischen zwei transversal zur Ausbreitungsrichtung benachbarten Punkten
im weit von der Quelle entfernten Wellenfeld keine Phasenkorrelation besteht. Im Idealfall
vollständige räumliche Kohärenz würde eine (unendlich kleine) Punktquelle voraussetzen.

Wir zeigen diesen Sachverhalt anhand der Interferenz am Doppelspalt in der in Ab-
bildung 9 dargestellten Versuchsanordnung und leiten dabei den Begriff der räumlichen
Kohärenzlänge lr her: Eine monochromatische Lichtquelle bestehe aus vielen voneinander
unabhängigen Quellenelementen Qn, sodass die Phasen ϕn der von den einzelnen Quellen-
elementen emittierten Teilwellen statistisch verteilt sind. Die Quelle habe die Querdimen-
sion b mit den Randquellen bzw. Randpunkten R1 und R2. Das vom Punkt 0 emittierte
Licht besitzt in den Spalten S1 und S2 wegen 0S1 = 0S2 synchrone Phasenschwankun-
gen und erzeugt deshalb auf dem Beobachtungsschirm ein zeitlich konstantes Interferenz-
muster. Wegen der Laufstreckendifferenz bzw. des Gangunterschieds wie beispielsweise

9Zitiert aus: Würzburger Quantenphysik-Konzept. G56 Kohärenzlänge,
https://www.forphys.de/Website/qm/gloss/kohlaenge.html

10Zitiert aus: Eugene Hecht, Optik, 4. Auflage, Oldenbourg Verlag, Wien, München, 2005, Seite 905.
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Abb. 9 Beim Young’schen Doppelspaltexperiment zur Herleitung der räumlichen Kohärenzlänge lr zeigt
sich der Einfluss der Quellengröße auf die Kohärenz des Wellenfeldes am Ort der Spalte S1 und S2. Die
Versuchsanordnung ist (nahezu) symmetrisch und die Ebenen von Quelle, Doppelspalt und Schirm sind
komplanar und erstrecken sich senkrecht zur Mittellinie durch 0, was die Herleitung deutlich vereinfacht.
Die Mittellinie kann man hier auch als optische Achse ansehen.
Abbildung und Legende nach Wolfgang Demtröder, 2004.

∆s = QS1−QS2 ist das für alle anderen Quellenpunkte Qn nicht der Fall, insbesondere auch
nicht für die Randpunkte R1 und R2 mit dem größten Gangunterschied

∆smax = R1S2 −R1S1 = R2S1 −R1S1 mit R1S1 = R2S2

≈ b · sinφ = b ·
g
2
D

für D ≫ g .

Einem Gangunterschied ∆s zwischen den Teilwellen entspricht die Phasendifferenz

∆ϕ = k ·∆s = 2π
λ
·∆s .

Wegen der statistischen Emission der Wellenzüge, ausgehend von den verschiedenen Quellen-
punkten Qn, folgt daraus:
Wenn der Gangunterschied ∆smax größer als λ/2 wird, kann die Phasendifferenz
∆ϕ = ϕ(S1) − ϕ(S2) um mehr als π schwanken, sodass sich dann das Interferenzmus-
ter in der Beobachtungsebene zeitlich wegmittelt. Damit haben wir die Bedingung für die
räumlich kohärente Beleuchtung der beiden Spalte für eine Quelle mit der Querdimension
bzw. Breite b gefunden:

∆smax ≈
b · g
2D <

λ

2 ⇔ b · g
D

< λ ⇒ (39)

räumliche Kohärenzlänge lr = g <
D

b
·λ . (40)

Die Kohärenz und damit der Kontrast des Interferenzmusters werden stärker bei Verkleinerung
der Quellengröße bzw. Quellenbreite b oder bei Verkleinerung des Spaltabstands g. Wird der
Spaltabstand g größer als die räumliche Kohärenzlänge lr, verschwindet das Interferenzmuster.
Allgemein gilt:
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Das monochromatische Licht einer räumlich ausgedehnten Quelle ist zwar zeitlich vollständig
kohärent, aber räumlich nur partiell-kohärent, sodass der Kontrast des Interferenzmusters im
Vergleich zu einer Punktquelle gleichmäßig gedämpft ist.

Wir betrachten jetzt das optische Wellenfeld in extrem großer Entfernung von einer räumlich
ausgedehnten Quelle, die kein monochromatisches Licht emittiert. Ein Beispiel dafür ist
das auf der Erde ankommende Licht der Fixsterne. Die Wellenzüge verschiedener Frequenz
verlaufen dann nahezu parallel und besitzen näherungsweise die Eigenschaften ebener Wellen
(siehe Abbildung 10). Man spricht deshalb bei Fixsternen in diesem Zusammenhang auch
von Multifrequenzlasern. Das ankommende Wellenfeld ist vollständig räumlich und partiell
zeitlich kohärent, also teilkohärent. Wenn wir den Sterndurchmesser bzw. die Quellenbreite b
nicht kennen, können wir die räumliche Kohärenzlänge nicht mit (40) bestimmen. Allerdings
lässt sich die Winkelausdehnung α der Quelle von der Doppelspaltebene aus leicht messen
(siehe Abbildung 9). Ist die Quelle extrem weit entfernt bzw. für D ≫ b wird α sehr klein
und wir erhalten in guter Näherung

tan α2 ≈
b
2
D

⇒ α

2 ≈
b
2
D

⇔ α ≈ b

D
.

Dies setzen wir in (39) ein und erhalten so die räumliche Kohärenzbedingung bezüglich der
Winkelausdehnung der Quelle:

b

D
· g ≈ α · g < λ ⇔

α <
λ

g
.

Veranschaulichung der räumlichen Kohärenz für den Fall paralleler Wellenzüge

Abb. 10 Räumliche Kohärenz.
Der Beobachter B bewegt sich mit einem der
Wellenzüge. Selbstverständlich handelt es sich
hierbei um ein Gedankenexperiment, weil sich
Körper mit einer Ruhemasse nicht mit Lichtge-
schwindigkeit bewegen können.

Ein Beobachter greift einen der parallelen Wellenzüge des Wellenfeldes heraus, bewegt sich
dann mit ihm und beobachtet dabei die übrigen Wellenzüge des Wellenfeldes und zwar
komplanar zur Ebene der Wellenfront, d. h. in diesem Fall senkrecht zur Ausbreitungsrichtung
des herausgegriffenen Wellenzuges. Findet er dabei feste Phasenbeziehungen (Phasendiffe-
renzen) zwischen dem herausgegriffenen Wellenzug und anderen Wellenzügen, so sind der
herausgegriffene und diese anderen Wellenzüge räumlich kohärent. Wie man an der Abbildung
10 erkennt, besteht bezüglich der Wellenfronten der verschiedenen Wellenzüge eine konstante
Phasendifferenz. Das Licht ist in diesem Fall vollständig räumlich kohärent.
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Parallele Wellenzüge mit gleicher Ausbreitungsrichtung bzw. Wellenfelder mit ebenen Wel-
lenfronten sind räumlich kohärent, aber nicht unbedingt auch zeitlich kohärent. Unabhängig
von der Frequenz besitzen sie im Vergleich zur Phase des Wellenzuges des „mitbewegten“
Beobachters in jedem Raumpunkt senkrecht zur Ausbreitungsrichtung immer die gleiche
Phasendifferenz. Verglichen wird also im Fall der räumlichen Kohärenz paralleler Wellen-
züge die Phasendifferenz zwischen den Wellenzügen zu Beginn und am Ende von Tmess an
verschiedenen Orten senkrecht zur Ausbreitungsrichtung.

6.5 Zur Kohärenz bei Punktquellen

Von Punktquellen emittierte Wellenzüge sind Kugelwellen und ihre Wellenfronten bilden
Kugelflächen.

Abb. 11 Vollständige räumliche und vollständige zeitliche
Kohärenz des Wellenfeldes einer Punktquelle, die monochro-
matisches Licht emittiert.
Abbildung nach E. Hecht, 2005.

Betrachten wir zunächst das Wellenfeld einer Punktquelle, die monochromatisches Licht
emittiert (siehe Abbildung 11). Ein bezüglich der Quelle ortsfester Beobachter B findet
im gesamten Bereich des Wellenfeldes eine konstante Phasendifferenz zu den sich radial
ausbreitenden Wellenzügen und es besteht eine starke Phasenkorrelation mit den Punkten
L1 bis L3 bzw. im gesamten Wellenfeld längs der Ausbreitungsrichtung. Weiterhin stellen
wir fest, dass nicht nur die Phasendifferenz in den Punkten T1 und T2 auf der Wellenfront
von B sondern auch die Phasendifferenzen längs aller Wellenfronten im gesamten Wellenfeld
zeitlich konstant gleich Null sind.
Das von einer Punktquelle emittierte monochromatische optische Wellenfeld ist also vollstän-
dig zeitlich und vollständig räumlich kohärent.

Abb. 12 Vollständige räumliche und evl. teilweise zeitliche
Kohärenz des Wellenfeldes einer Punktquelle, die Wellenzüge
verschiedener Frequenz emittiert.
Abbildung nach E. Hecht, 2005.

Betrachten wir jetzt das optische Wellenfeld einer Punktquelle, die kein monochromatisches
Licht emittiert (siehe Abbildung 12). Wie man sieht, sind auch in diesem Fall die Phasen-
differenzen längs aller Wellenfronten der Wellenzüge verschiedener Frequenz im gesamten
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Wellenfeld zeitlich konstant gleich Null, sodass das Wellenfeld vollständig räumlich kohärent
ist.

Ein bezüglich der Quelle ortsfester Beobachter B findet keine im gesamten Bereich des
Wellenfeldes konstante Phasendifferenzen zwischen den sich radial ausbreitenden Wellenzügen,
sodass keine oder nur eine schwache Phasenkorrelation zwischen den Punkten L1 bis L3 bzw.
im gesamten Wellenfeld längs der Ausbreitungsrichtung besteht. Deshalb ist das Wellenfeld
in der Abbildung 12 wenn überhaupt nur teilweise zeitlich kohärent. Treffen nämlich die
Wellenfronten von Abbildung 12 beispielsweise auf einen Doppelspalt, so kommt es danach in
Abhängigkeit von der Länge der nacheinander folgenden Wellenzüge und abhängig von ihrer
Frequenz zu mehr oder weniger kurzzeitigen, verschiedenen Interferenzmustern. Wenn bei
nicht-monochromatischem Licht überhaupt ein stationäres Interferenzbild entsteht, ist dieses
keinesfalls so scharf, wie es bei monochromatischem Licht der Fall wäre. Allgemein gilt:
Von einer Punktquelle emittiertes Licht mit einem ausgedehnten Frequenzspektrum ist zwar
räumlich vollständig kohärent, aber zeitlich nur partiell-kohärent, sodass der Kontrast das
Interferenzmuster mit zunehmendem Abstand von der optischen Achse zunehmend gedämpft
wird.
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7 Die Polarisation des Lichts
Wir beginnen dieses Kapitel mit einem Zitat – in Anführungszeichen gesetzt – aus Eugene
Hecht, Optik, 4. Auflage, Oldenbourg Verlag München Wien, 2005, Seite 533 und Seite 534:

„ Natürliches Licht
Eine gewöhnliche Lichtquelle besteht aus einer sehr großen Zahl zufällig ausge-
richteter atomarer Strahler. Jedes angeregte Atom sendet etwa 10−8 s lang einen
polarisierten Wellenzug aus. Alle diese Wellen gleicher Frequenz überlagern sich
zu einer einzigen polarisierten Welle, die maximal 10−8 s lang stabil bleibt. Ständig
werden neue Wellenzüge emittiert, und die Gesamtpolarisation ändert sich in einer
vollkommen unvorhersehbaren Art und Weise. Finden diese Veränderungen mit so
großer Geschwindigkeit statt, dass man die einzelnen resultierenden Polarisations-
zustände nicht mehr erkennen kann, so spricht man von natürlichem Licht oder
unpolarisiertem Licht, wobei letztere Bezeichnung etwas irreführend ist, da sich
das Licht in Wirklichkeit aus einer schnell veränderlichen Abfolge verschiedener
Polarisationszustände zusammensetzt. Zufällig polarisiertes Licht ist wahrschein-
lich eine treffendere Bezeichnung.
Wir können natürliches Licht mathematisch anhand zweier beliebiger,
inkohärenter, orthogonaler, linear polarisierter Wellen gleicher Amplitude auf-
schreiben, also Wellen, deren relativer Phasenunterschied sich schnell und
willkürlich verändert.
Dabei wollen wir nicht vergessen, dass eine idealisierte monochromatische Welle
als unendlicher Wellenzug dargestellt werden muss. Wird diese Welle in zwei
orthogonale Komponenten senkrecht zur Fortpflanzungsrichtung zerlegt, so müssen
die Komponenten ihrerseits dieselbe Frequenz besitzen, unendlich ausgedehnt
und deshalb wechselseitig kohärent sein (ε = konstant).1 Mit anderen Worten:
Eine ideal monochromatische ebene Welle ist immer polarisiert. . . .
Im Allgemeinen ist Licht, ob „natürlichen“ oder „künstlichen“ Ursprungs, weder
vollkommen polarisiert noch unpolarisiert – beides sind Grenzfälle. Der elektrische
Feldvektor verändert sich meistens weder völlig unregelmäßig noch völlig regelmä-
ßig, weshalb man solches Licht auch teilweise polarisiert nennt. Am einfachsten
beschreibt man dieses Verhalten mit einer Überlagerung von natürlichem und
polarisiertem Licht.“

Wir werden uns in diesem und in den folgenden Kapiteln mit polarisiertem, insbesondere mit
linear polarisiertem und zirkular polarisiertem Licht (in Form ebener Wellen) beschäftigen.
Dabei ist es uns erlaubt, vereinfachend nur den elektrischen bzw. optischen Anteil E⃗(r⃗, t) der
elektromagnetischen Wellen zu verwenden, denn die Polarisation einer elektromagnetischen
Welle ist durch die Richtung des elektrischen Feldvektors E⃗ definiert.

Polarisation des Lichts im Wellenbild

Polarisationszustände

P -Zustand : lineare Polarisation,
L -Zustand : linkszirkulare Polarisation,
R -Zustand : rechtszirkulare Polarisation,
E -Zustand : elliptische Polarisation (allgemeiner Fall).

Die lineare und die zirkulare Polarisation kann man als Spezialfälle der elliptischen Polarisa-
tion ansehen.

1Wir werden den relativen Phasenunterschied ε mit ∆ϕ bezeichnen.
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Wir gehen aus vom elektrischen bzw. optischen Anteil

E⃗(r⃗, t) =

Ex(r⃗, t)
Ey(r⃗, t)
Ez(r⃗, t)

 =


E0x · ei(k⃗· r⃗−ωt +ϕ0x)

E0y · ei(k⃗· r⃗−ωt +ϕ0y)

E0z · ei(k⃗· r⃗−ωt +ϕ0z)

 =

E0x · eiϕ0x)

E0y · eiϕ0y)

E0z · eiϕ0z)

 ei(k⃗· r⃗−ωt)

einer ebenen elektromagnetischen Welle in der Darstellung als komplexwertige Wel-
lenfunktion mit konstanter Amplitude E⃗0 =

(
E0x, E0y, E0z

)
, mit dem variablen Pha-

senanteil
(
k⃗· r⃗ − ωt

)
und mit den Phasenkonstanten ϕ0x, ϕ0y, ϕ0z . Die Phasenkonstanten

können positive und negative Werte annehmen. Das Vorzeichen im variablen Phasenanteil(
k⃗· r⃗ − ωt

)
bestimmt die Ausbreitungsrichtung der Wellen :

ei(kz−ωt) ⇒ Ausbreitung in (+z)-Richtung ,

ei(kz+ωt) ⇒ Ausbreitung in (−z)-Richtung .

Wie allgemein üblich werden auch wir im Folgenden nur Wellen mit der Ausbreitung in die
positive Richtung der z-Achse betrachten.

Ohne Beschränkung der Allgemeinheit legt man gern die Ebene der Wellenfront in die
(x, y)-Ebene, sodass sich die Welle gemäß |k⃗| = kz = k längs der z-Achse ausbreitet. Die
komplexwertige Wellenfunktion erhält dann die einfache Gestalt

E⃗(z, t) =

Ex(z, t)
Ey(z, t)

0

 =

E0x · ei(kz−ωt +ϕ0x)

E0y · ei(kz−ωt +ϕ0y)

0

 =

E0x · eiϕ0x)

E0y · eiϕ0y)

0

 ei(kz−ωt) .

Weil man den Phasennullpunkt frei wählen kann, sind nicht die Phasenkonstanten selbst im
Zusammenhang mit der Polarisation relevant, sondern von Bedeutung ist nur der

Phasenunterschied ∆ϕ := ϕ0y − ϕ0x

zwischen den Komponenten Ex und Ey von E⃗, welcher dann der y-Komponente zugeordnet
wird. Die komplexwertige Wellenfunktion hat damit schließlich die Gestalt

E⃗(z, t) =

E0x · ei(kz−ωt)

E0y · ei(kz−ωt +∆ϕ)

0

 =

 E0x

E0y · ei ∆ϕ

0

 ei(kz−ωt) . (41)
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7.1 Linear polarisiertes Licht

Unabhängig vom Amplitudenverhältnis E0y/E0x entsteht linear polarisiertes Licht (P) unter
den Bedingungen, dass entweder die x- und die y-Komponente von E⃗ die gleiche Phase
besitzen oder dass der Phasenunterschied ∆ϕ zwischen den Komponenten ein positives oder
negatives ganzzahliges Vielfaches von π beträgt:

∆ϕ = m · π , m ∈ Z , (E0x = E0y) ∧ (E0x ̸= E0y) .

Damit und ausgehend von (41) wird linear polarisiertes Licht (P) beschrieben durch die
komplexwertige Wellenfunktion

E⃗(z, t) =

 E0x

E0y · ei ∆ϕ

0

 ei(kz−ωt) für ∆ϕ = m · π , m ∈ Z . (42)

Für m = 0, ±2, ±4, . . . schwingen die x- und die y-Komponente von E⃗ gleichsinnig beide
gleichzeitig in die positive oder negative Richtung. Das bedeutet, dass die Schwingungsebene
für gerade m und m = 0 graphisch gesehen durch den 1. und 3. Quadranten der (x, y)-Ebene
geht.
Für m = ±1, ±3, ±5, . . . schwingt die y-Komponente entgegengesetzt zur x-Komponente
von E⃗. Das bedeutet, dass die Schwingungsebene für ungerade m graphisch gesehen durch
den 2. und 4. Quadranten der (x, y)-Ebene geht.

Das Verhältnis E0y/E0x legt die (konstante) Polarisationsrichtung fest gemäß

tanα = E0y

E0x
,

wobei α der Neigungswinkel ist, der zwischen der positiven x-Achse und dem
E⃗-Vektor und demzufolge im 1. oder 4. Quadranten der (x, y)-Ebene liegt, sodass −90◦ ≤
α ≤ +90◦ gilt.

Mit einem Polarisationsfilter kann man die Komponente E⃗pol von E⃗ herausfiltern. E⃗pol ist
dabei die Projektion von E⃗ auf die Polarisationsrichtung des Filters und besitzt demzufolge
die Polarisationsrichtung des Filters nach unseren Voraussetzungen in der (x, y)-Ebene. Ist ϑ
der Winkel zwischen dem E⃗-Vektor und der Polarisationrichtung, erhalten wir∣∣E⃗pol

∣∣ = cosϑ ·
∣∣E⃗∣∣ .

Bei dieser „Filterung“ bzw. Polarisation wird die Phase nicht verändert, sodass E⃗pol die
gleiche Phase besitzt wie E⃗.
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7.2 Zirkular polarisiertes Licht

Im speziellen Fall mit

∆ϕ = ϕ0y − ϕ0x = ±π2 +m · 2π , m ∈ Z und E0x = E0y = E0

resultiert die zirkulare Polarisation, beschrieben durch die komplexwertige Wellenfunktion

E⃗(z, t) =

Ex(z, t)
Ey(z, t)

0

 =

 E0

E0 · ei ∆ϕ

0

 ei(kz−ωt) für ∆ϕ = ±π2 +m · 2π , m ∈ Z . (43)

Wir unterscheiden rechtszirkular und linkszirkular polarisiertes Licht.
Rechtszirkular polarisiert (R) bedeutet, dass der E⃗-Feldvektor bei Blickrichtung zur
Lichtquelle mit konstanter Amplitude E0 und mit der gleichen Frequenz, mit der er oszilliert,
im Uhrzeigersinn um die Ausbreitungsachse rotiert. Analog dazu rotiert der E⃗-Feldvektor
bei linkszirkularer Polarisation (L) entgegengesetzt zum Uhrzeigersinn um die Ausbrei-
tungsachse.2

Eine andere Möglichkeit, die zirkulare Polarisation zu klassifizieren, bietet die Helizität.
Die positive Helizität σ+ entspricht einer rechtshändigen Schraubenlinie und die negative
Helizität σ− einer linkshändigen Schraubenlinie, wobei der entsprechende Daumen in die
Richtung der Vorwärtsbewegung der Schraube zeigt.

Wir führen jetzt einige Beziehungen an, die wir im Folgenden benötigen werden:

• cos
(

π
2 ± α

)
= ∓ sinα ⇒ cos

(
α± π

2
)

= ∓ sinα ,
sin
(

π
2 ± α

)
= cosα ⇒ sin

(
α± π

2
)

= ± cosα .

• ∆ϕ = −π2 +m · 2π , m ∈ Z ⇒

cos
(
kz − ωt− π

2
)

= sin(kz − ωt) eilt cos(kz − ωt) voraus .

• ∆ϕ = +π

2 +m · 2π , m ∈ Z ⇒

cos
(
kz − ωt+ π

2
)

= − sin(kz − ωt) läuft cos(kz − ωt) nach .

• ∆ϕ = −π2 entspricht dem Faktor −i = ei(− π
2 ) : (44)

ei(kz−ωt − π
2 ) = ei(− π

2 ) · ei(kz−ωt) = −i ·
[

cos(kz−ωt) + i sin(kz−ωt)
]
,

ei(kz−ωt − π
2 ) = sin(kz−ωt) − i cos(kz−ωt) .

• ∆ϕ = +π

2 entspricht dem Faktor +i = ei(+ π
2 ) : (45)

ei(kz−ωt + π
2 ) = ei(+ π

2 ) · ei(kz−ωt) = +i ·
[

cos(kz−ωt)− i sin(kz−ωt)
]
,

ei(kz−ωt + π
2 ) = sin(kz−ωt) + i cos(kz−ωt) .

2Diese Konvention hinsichtlich rechts- und linkszirkularer Polarisation ist in der Optik üblich. In Anlehnung
an die Helizität der Photonen gilt in der Quantenphysik die umgekehrte Konvention.
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Physikalisch relevant ist letztlich nur der Realteil der komplexwertigen Wellenfunktion (41),
nämlich

Re
{

E⃗(z, t)
}

=

E0x · cos
(
kz − ωt+ ϕ0x

)
E0y · cos

(
kz − ωt+ ϕ0y

)
0

 .

Im speziellen Fall des zirkular polarisierten Lichts ist das in unserer Notation

Re
{

E⃗(z, t)
}

= E0

cos
(
kz − ωt

)
cos
(
kz − ωt+ ∆ϕ

)
0

 für ∆ϕ = ±π2 +m · 2π , m ∈ Z .

Weil in der Literatur der Phasenunterschied ∆ϕ manchmal auch der x-Komponente von E⃗
zugeordnet wird, zeigen wir der Vollständigkeit halber tabellarisch die Phasen der x- und
y-Komponente von E⃗(z, t) für die sich dann ergebenden vier möglichen Fälle

ϕ0y = ∆ϕ = ±π2 ⇒ ϕ0x = 0 und ϕ0x = ∆ϕ = ±π2 ⇒ ϕ0y = 0 :

Tabelle: Zirkulare Polarisation

rechtszirkulare Polarisation (R)
=̂ σ− negative Helizität

Ey eilt Ex um π
2 voraus.

E⃗(z, t) = E0

ei(kz−ωt)

ei(kz−ωt− π
2 )

0

 (44)⇒

cos
(
kz − ωt

)
cos
(
kz − ωt− π

2
)

0

=

cos
(
kz − ωt

)
sin
(
kz − ωt

)
0


oder

E⃗(z, t) = E0

ei(kz−ωt+ π
2 )

ei(kz−ωt)

0

 (45)⇒

cos
(
kz − ωt+ π

2
)

cos
(
kz − ωt

)
0

=

− sin
(
kz − ωt

)
cos
(
kz − ωt

)
0



linkszirkulare Polarisation (L)
=̂ σ+ positive Helizität

Ey läuft Ex um π
2 hinterher.

E⃗(z, t) = E0

ei(kz−ωt)

ei(kz−ωt+ π
2 )

0

 (45)⇒

cos
(
kz − ωt

)
cos
(
kz − ωt+ π

2
)

0

=

 cos
(
kz − ωt

)
− sin

(
kz − ωt

)
0


oder

E⃗(z, t) = E0

ei(kz−ωt− π
2 )

ei(kz−ωt)

0

 (44)⇒

cos
(
kz − ωt− π

2
)

cos
(
kz − ωt

)
0

=

sin
(
kz − ωt

)
cos
(
kz − ωt

)
0


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Achtung!
Während der variable Phasenanteil

kz − ωt bzw. ωt− kz = −(kz − ωt)

äquivalent verwendet werden kann, beide Varianten beschreiben die Ausbreitung derselben
Welle in die positive z-Richtung, ist dies für die Phasen kz − ωt+ ϕ0 und ωt− kz + ϕ0 mit
dem konstanten Phasenanteil ϕ0 ̸= 0 nicht der Fall. Wenn wir nämlich statt kz − ωt als
variablen Anteil ωt− kz benutzten, würden wegen

kz − ωt +ϕ0 und ωt− kz + ϕ0 = −
(
kz − ωt −ϕ0

)
die x- und die y-Komponente in den Vektoren der Tabelle „Zirkulare Polarisation“ vertauschen
und damit auch die Formeln für rechts- und linkszirkulare Polarisation.

7.3 Elliptisch polarisiertes Licht

Die elliptische Polarisation (E) ist im Grunde genommen der allgemeine Fall der Pola-
risation. Man kann nämlich die lineare und die zirkulare Polarisation als Spezialfälle der
elliptischen Polarisation auffassen, denn mit m ∈ Z gilt für die

• lineare Polarisation:
∆ϕ = m · π im Fall (E0x = E0y) und (E0x ̸= E0y) ,

• zirkulare Polarisation:

∆ϕ = m · π ± π

2 im Fall E0x = E0y ,

• elliptische Polarisation, Ellipsen-Hauptachse entlang der x- oder y-Achse orientiert:

∆ϕ = m · π ± π

2 im Fall E0x ̸= E0y , (46)

• elliptische Polarisation, Ellipsen-Hauptachse um den Winkel α gegen die positive
x-Achse geneigt: ∆ϕ ̸= m · π

und
∆ϕ ̸= m · π ± π

2

 im Fall (E0x ̸= E0y) und (E0x = E0y) .

(47)

(46) und (47) sind also die Bedingungen für das Auftreten der elliptischen Polarisati-
on. In einer ortsfesten (x, y)-Ebene (z = const) rotiert der E⃗-Vektor bei elliptischer
Polarisation senkrecht zu k⃗ um die z-Achse und verändert dabei seinen Betrag. Der Nei-
gungswinkel α von der positiven x-Achse zur Hauptachse3 der Polarisationsellipse (siehe
Abbildung 13) ergibt sich aus

tan 2α = 2 · E0xE0y · cos ∆ϕ
E2

0x − E2
0y

=
2 E0y

E0x

1−
(

E0y

E0x

)2 cos ∆ϕ . (48)

3Zur Erinnerung: Die Hauptachse entspricht dem größten Durchmesser und die Nebenachse dem kleinsten
Durchmesser einer Ellipse. Die Länge der großen Halbachse ist gleich dem größten Radius und die Länge
der kleinen Halbachse ist gleich dem kleinsten Radius einer Ellipse.
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Und den Elliptizitätswinkel ε der Polarisationsellipse erhält man aus

sin 2ε = 2 · E0xE0y · sin ∆ϕ
E2

0x + E2
0y

=
2 E0y

E0x

1 +
(

E0y

E0x

)2 sin ∆ϕ . (49)

Abb. 13 Polarisationsellipse mit der großen Halbachse H und der kleinen Halbachse h. Mit dieser
Notation gilt die Beziehung H2 + h2 = E2

0x +E2
0y . Abbildung nach Eugene Hecht, Optik, 4. Auflage,

Oldenbourg Verlag, Wien, München, 2005, Seite 531.

Ausgehend von

(41) E⃗(z, t) =

Ex(z, t)
Ey(z, t)

0

 =

E0x · ei(kz−ωt)

E0y · ei(kz−ωt +∆ϕ)

0

 =

 E0x

E0y · ei ∆ϕ

0

 ei(kz−ωt)

mit ϕ0x = 0 ⇒ ∆ϕ = ϕ0y − ϕ0x = ϕ0y werden wir jetzt den Realteil

Re
{

E⃗(z, t)
}

=


ReEx

ReEy

0

 =

E0x · cos
(
kz − ωt

)
E0y · cos

(
kz − ωt+ ∆ϕ

)
0


von (41) unter der Bedingung (47) diskutieren, d. h. für eine Polarisationsellipse mit gegen die
x-Achse geneigter Hauptachse. Das Ziel dabei ist, eine Gleichung für die Kurve zu ermitteln,
welche die „ Spitze“ des E⃗-Vektors in einer ortsfesten (x, y)-Ebene (Schwingungsebene mit
z = const) beim Durchlauf der Welle beschreibt. Die gesuchte Kurvengleichung sollte am
Ende weder von z noch von der Zeit abhängen. Formen wir also

ReEx = E0x · cos
(
kz − ωt

)
und ReEy = E0y · cos

(
kz − ωt+ ∆ϕ

)
u. a. mit Hilfe des Additionstheorems cos(α± β) = cosα · cosβ ∓ sinα · sin β um:

ReEx

E0x
cos ∆ϕ = cos

(
kz − ωt

)
· cos ∆ϕ ,

sin2(kz − ωt) = 1− cos2(kz − ωt) = 1−
(ReEx

E0x

)2
, (50)

ReEy

E0y
= cos(kz − ωt) · cos ∆ϕ − sin(kz − ωt) · sin ∆ϕ .
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Daraus folgt

ReEy

E0y
−

ReEx

E0x
cos ∆ϕ = − sin(kz − ωt) · sin ∆ϕ (50)=⇒

(
ReEy

E0y
−

ReEx

E0x
cos ∆ϕ

)2

=
[

1−
(ReEx

E0x

)2 ]
· sin2 ∆ϕ ,

(ReEy

E0y

)2

− 2
(ReEx

E0x

)(ReEy

E0y

)
cos ∆ϕ+

(ReEx

E0x

)2
cos2 ∆ϕ

= sin2 ∆ϕ−
(ReEx

E0x

)2
sin2 ∆ϕ .

Umordnen ergibt schließlich die Ellipsengleichung

(ReEx

E0x

)2
+
(ReEy

E0y

)2

− 2
(ReEx

E0x

)(ReEy

E0y

)
cos ∆ϕ = sin2 ∆ϕ

für eine schräge Ursprungsellipse, d. h. für eine Ellipse, deren Mittelpunkt zwar mit dem
Koordinatenursprung zusammenfällt, deren Haupt- und Nebenachse aber nicht parallel zu
den Koordinatenachsen verlaufen. Wir sprechen in diesem Fall von einer Ellipse in nicht
achsenparalleler Ursprungslage.

Achtung!
Weiterführendes zu Ellipsen im Allgemeinen und eine Darstellung der Hauptachsentransfor-
mation finden sich im Anhangsabschnitt 17.1 Und die Berechnung von E0x und E0y zeigen
wir im Anhangsabschnitt 17.2.
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7.4 Jones-Formalismus

Mit Hilfe des Jones-Formalismus4, also mit Jones-Vektoren und Jones-Matrizen lässt sich
die Gesamtwirkung von nacheinander angeordneten polarisierenden optischen Bauelementen
bequemer berechnen.

Zunächst zeigen wir, wie Jones-Vektoren konstruiert werden. Man geht vom elektrischen
(optischen) Anteil bzw. dem E⃗-Feld einer ebenen elektromagnetischen Welle in der komplexen
Darstellung aus und legt den E⃗-Vektor in die x, y-Ebene, sodass der Wellenvektor k⃗ und
damit die Ausbreitung der Welle in die positive Richtung der z-Achse zeigt:

E⃗(z, t) =

Ex(z, t)
Ey(z, t)

0

 =

E0x · ei(kz−ωt +ϕ0x)

E0y · ei(kz−ωt +ϕ0y)

0

 =

E0x · eiϕ0x)

E0y · eiϕ0y)

0

 ei(kx−ωt)

=

Ẽx

Ẽy

0

 ei(kx−ωt) .

Unterdrückt man jetzt die z-Komponente und den variablen Phasenanteil, so erhält man einen
zweidimensionalen Vektor Ẽ, der nur noch die Information über die Amplituden E0x = const
und E0y = const sowie über die Phasenkonstanten ϕ0x und ϕ0y enthält:

Ẽ =
(
Ẽx

Ẽy

)
=
(
E0x · eiϕ0x

E0y · eiϕ0y

)
. (51)

„ Da der Phasennullpunkt beliebig gewählt werden kann (es kommt nur auf die Differenz
∆ϕ = ϕ0y − ϕ0x an), können wir ϕ0x = 0 wählen.“5 Demzufolge erhalten wir aus (51)

ϕ0x = 0 ⇒ ∆ϕ := ϕ0y − ϕ0x = ϕ0y ⇒

Ẽ =
(
Ẽx

Ẽy

)
=
(

E0x

E0y · ei ∆ϕ

)
.

Normiert man schließlich Ẽ auf (die Länge bzw. das Betragsquadrat) 1, resultiert der

Jones-Vektor J⃗ = Ẽ∣∣Ẽ∣∣ = 1∣∣Ẽ∣∣
(

E0x

E0y · ei ∆ϕ

)

mit ∣∣Ẽ∣∣ =
√
E0x eiϕ0x · E0x e−iϕ0x + E0y eiϕ0y · E0y e−iϕ0y

=
√
E0x · E0x + E0y ei ∆ϕ · E0y e−i ∆ϕ =

√
E2

0x + E2
0y .

Die Jones-Vektoren für die Polarisationszustände E (allgemeiner Fall), P , R und L sind u. a.
unter Berücksichtigung der Tabelle „Zirkulare Polarisation“ :

4Siehe auch bei Wikipedia unter dem Suchbegriff Jones-Formalismus.
5Zitiert aus Wolfgang Demtröder, Springer-Lehrbuch,

Experimentalphysik 2 – Elektrizität und Optik, 3. Auflage, Springer-Verlag, Berlin, Heidelberg, New York,
2004, Abschnitt 9.6.7 Jones-Vektoren, Seite 286.
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• P-Zustand (lineare Polarisation)
Mit dem Neigungswinkel α zwischen der positiven x-Achse und der nächstgelegenen
Schwingungshalbebene gilt für den Amplitudenvektor

E⃗0 =
(
E0x

E0y

)
=
(
E0 cosα
E0 sinα

)
.

Und mit ∆ϕ = 0 sowie∣∣Ẽ∣∣ =
√
E2

0x + E2
0y =

√
E2

0 cos2 α+ E2
0 sin2 α = E0

ist der zugehörige Jones-Vektor

J⃗P = 1
E0

(
E0 · cosα
E0 · sinα

)
=
(

cosα
sinα

)
.

Für
α = ±45◦ ⇒ cos(±45◦) = 1/

√
2 , sin(±45◦) = ±1/

√
2

resultiert dann der Jones-Vektor

J⃗±45◦ = 1
E0

E0 · 1√
2

E0 ·
(
± 1√

2

) = 1√
2

(
1
±1

)
.

Die zwei Sonderfälle der linearen Polarisation sind der
horizontale P-Zustand bzw. die horizontale Polarisation (in x-Richtung) mit dem Index
H und der
vertikale P-Zustand bzw. die vertikale Polarisation (in y-Richtung) mit dem Index V.
Mit E0x = E0 ∧ E0y = 0 bzw. E0y = E0 ∧ E0x = 0 resultieren also die
Jones-Vektoren

J⃗H = 1
E0

(
E0
0

)
=
(

1
0

)
, J⃗V = 1

E0

(
0
E0

)
=
(

0
1

)
.

Wir können
{

J⃗H, J⃗V
}

als Orthonormalbasis betrachten, denn

J⃗H · J⃗H = J⃗V · J⃗V = 1 und J⃗H · J⃗V = 0 .

Darauf werden wir später noch zurückkommen.
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• R-Zustand (rechtszirkulare Polarisation)

Für den Fall der rechtszirkularen Polarisation erhalten wir unter Berücksichtigung der
Tabelle „Zirkulare Polarisation“ und mit (44) bzw. mit ∆ϕ = −π

2

Ẽ =
(

E0

E0 · e−i π
2

)
=
(

E0

−iE0

)

und mit ∣∣Ẽ∣∣ =
√
E2

0 + E2
0 =

√
2 · E0

den Jones-Vektor

J⃗R = 1√
2E0

(
E0

−iE0

)
= 1√

2

(
1
−i

)
.

• L-Zustand (linkszirkulare Polarisation)

Für den Fall der linkszirkularen Polarisation erhalten wir unter Berücksichtigung der
Tabelle „Zirkulare Polarisation“ und mit (45) bzw. mit ∆ϕ = +π

2

Ẽ =
(

E0

E0 · e+i π
2

)
=
(
E0

iE0

)

und mit ∣∣Ẽ∣∣ =
√
E2

0 + E2
0 =

√
2 · E0

den Jones-Vektor

J⃗L = 1√
2E0

(
E0

iE0

)
= 1√

2

(
1
i

)
.

• E-Zustand (elliptische Polarisation, allgemeiner Fall)

Für den Fall der elliptischen Polarisation erhalten wir unter Berücksichtigung von

ϕ0x = 0 ⇒ ∆ϕ = ϕ0y − ϕ0x = ϕ0y , ∆ϕ ̸= m · π , m ∈ Z

zunächst den Jones-Vektor in der Form

J⃗E = 1∣∣Ẽ∣∣ Ẽ = 1
Ẽ

(
Ẽx

Ẽy

)
= 1√

E2
0x + E2

0y

(
E0x

E0y · ei ∆ϕ

)
.

Für die komplexe Zahl Ẽy = E0y · ei ∆ϕ gilt gemäß der Euler’schen Formel :

E0y · ei ∆ϕ = E0y · (cos ∆ϕ+ i sin ∆ϕ) = E0y cos ∆ϕ︸ ︷︷ ︸
Re{Ẽy}

+i · E0y sin ∆ϕ︸ ︷︷ ︸
Im{Ẽy}

= Re
{
Ẽy

}
+ i · Im

{
Ẽy

}
= ReẼy + i ImẼy .
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Der Jones-Vektor für die elliptische Polarisation ist damit schließlich auch

J⃗E = 1√
E2

0x + E2
0y

(
E0x

ReẼy + i ImẼy

)
.

Für E0x = E0y und ∆ϕ = m · π± π
2 resultiert daraus ein Jones-Vektor für die zirkulare

Polarisation.
Für E0x ≠ E0y und ∆ϕ = m ·π± π

2 resultiert daraus ein Jones-Vektor für die elliptische
Polarisation mit längs der x- oder längs der y-Achse orientierter Hauptachse der
Polarisationsellipse.

Bei Jones-Vektoren zur Beschreibung der zirkularen Polarisation sind die Kompo-
nenten betragsgleich und ist eine der Komponenten rein imaginär.
Bei Jones-Vektoren zur Beschreibung der elliptischen Polarisation mit längs der
x- oder längs der y-Achse orientierter Hauptachse sind die Komponenten nicht
betragsgleich und ist eine der Komponenten rein imaginär.
Bei Jones-Vektoren zur Beschreibung der elliptischen Polarisation mit geneigter
Hauptachse sind die Komponenten allgemein nicht betragsgleich, können aber
betragsgleich sein. Immer aber ist in diesem Fall eine der Komponenten komplex
mit nicht verschwindendem Realteil und nicht verschwindendem Imaginärteil.

Die Überlagerung von polarisiertem Licht lässt sich durch Addition der entsprechenden
Jones-Vektoren beschreiben, wie beispielsweise :

J⃗H + J⃗H =
(

1
0

)
+
(

1
0

)
=
(

2
0

)
= 2 · J⃗H ,

J⃗H + J⃗V =
(

1
0

)
+
(

0
1

)
=
(

1
1

)
=
√

2 · J⃗45◦ ,

J⃗R + J⃗L = 1√
2

(
1
−i

)
+ 1√

2

(
1
i

)
= 1√

2

(
2
0

)
=
√

2 · J⃗H .

Wie man sieht, ist die Summe von Jones-Vektoren nicht normiert. Dass bei der Überlagerung
von J⃗R und J⃗L der Jones-Vektor

√
2 · J⃗H (für die horizontale Polarisation) resultiert, liegt an

der Art und Weise, wie in (41) die Wellenfunktion E⃗(z, t) zur Beschreibung der Polarisation
definiert ist. Dort wird nämlich die Phasendifferenz ∆ϕ der y-Komponente zugeordnet gemäß
ϕ0x

!= 0.
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Man unterscheidet im Wesentlichen drei Arten von polarisierenden optischen Bauelementen:

• Polarisationsfilter oder Linearpolarisatoren :

Selektion einer Schwingungsrichtung.

Durch die Unterdrückung aller anderen Schwingungsrichtungen ist die Intensität des
ausfallenden Lichts gegenüber dem einfallenden Licht reduziert. Es resultiert also linear
polarisiertes Licht, das in der Polarisationsebene bzw. in Richtung der Durchlass- oder
Transmissionsachse des Linearpolarisators schwingt. Transmissionsachse und positive
x-Achse bilden den Winkel ϑ.

• Polarisationsdreher :

Die Schwingungsrichtung bzw. Polarisationsebene linear polarisierten Lichts wird um
den Winkel β gedreht bei unveränderter Lichtintensität.

• Phasenverzögerer :

Das Licht wird in einer Schwingungsrichtung gegenüber der dazu orthogonalen Schwin-
gungsrichtung verzögert. Die Komponente des einfallenden Lichts, die verzögert wird,
benötigt mehr Zeit, um das optische Bauelement zu durchlaufen. Phasenverzögerer
besitzen also eine durch die Verzögerung langsame Transmissionsachse und folglich
orthogonal dazu eine schnelle Achse, wodurch im ausfallenden Licht eine Phasenver-
schiebung oder Phasendifferenz zwischen der Komponente der langsamen Achse und
der Komponente der schnellen Achse resultiert.

Polarisierende optische Bauelemente entsprechen Operatoren in Gestalt von
2× 2 -Matrizen, den Jones-Matrizen M . Einfallendes polarisiertes Licht kann durch
Jones-Vektoren dargestellt werden, auf die dann die Jones-Matrizen wirken. Jones-Matrizen
sind allgemein nicht kommutativ. Werden also mehrere optische Bauelemente nacheinander
eingesetzt, müssen die zugehörigen Jones-Matrizen in der gleichen Reihenfolge auf den
Jones-Vektor wirken wie die Bauelemente auf das einfallende Licht.

Herleitung einiger Jones-Matrizen

• Ein Linearpolarisator habe eine Transmissionsachse mit dem Winkel ϑ zur positi-
ven x-Achse. Auf diesen Polarisator mit der Jones-Matrix Mϑ =

(
a b
c d

)
treffe

a) linear polarisiertes Licht mit dem Neigungwinkel α = ϑ, das den Polarisator unge-
hindert passiert, und
b) linear polarisiertes Licht mit dem Neigungswinkel α+ 90◦ = ϑ+ 90◦, das vollständig
blockiert wird.
Mit den entsprechenden Jones-Vektoren

J⃗α
α=ϑ= J⃗ϑ =

(
cosϑ
sinϑ

)
= J⃗∥

und

J⃗(α+90◦)
α=ϑ=

(
cos(ϑ+ 90◦)
sin(ϑ+ 90◦)

)
=
(
− sinϑ

cosϑ

)
= J⃗⊥
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erhalten wir zwei Matrixgleichungen, die uns dann zwei Gleichungssysteme aus jeweils
zwei Gleichungen mit zwei Unbekannten zur Bestimmung der Matrixelemente liefern:

Mϑ J⃗ϑ =
(
a b
c d

)(
cosϑ
sinϑ

)
= Mϑ J⃗∥ =

(
cosϑ
sinϑ

)
,

Mϑ J⃗(ϑ+90◦) =
(
a b
c d

)(
− sinϑ

cosϑ

)
= Mϑ J⃗⊥ =

(
0
0

)
⇒

Bestimmung von a und b :

(I) : a cosϑ + b sinϑ = cosϑ ,

(II) : a (− sinϑ) + b cosϑ = 0 ⇒

b · cosϑ = a · sinϑ ⇔ b = a
sinϑ
cosϑ , a · cosϑ+ a

sinϑ
cosϑ · sinϑ = cosϑ ⇒

a = cos2 ϑ ,

b = cosϑ sinϑ .

Bestimmung von c und d :

(III) : c cosϑ + d sinϑ = sinϑ ,

(IV) : c (− sinϑ) + d cosϑ = 0 ⇒

d · cosϑ = c · sinϑ ⇔ d = c
sinϑ
cosϑ , c · cosϑ+ c

sinϑ
cosϑ · sinϑ = sinϑ ⇒

c = sinϑ cosϑ ,

d = sin2 ϑ .

Die Jones-Matrix für den Linearpolarisator mit einer Transmissionsachse im Winkel ϑ
zur positiven x-Achse ist also

Mϑ =
(

cos2 ϑ cosϑ sinϑ
sinϑ cosϑ sin2 ϑ

)
.

Mit sin(±45◦) = ± 1√
2 und cos(±45◦) = + 1√

2 erhalten wir damit sofort die entsprechen-
den Jones-Matrizen für Linearpolarisatoren mit den Transmissionsachsen im Winkel
von ϑ = +45◦ und ϑ = −45◦ :

M±45◦ =
( 1

2 ±1
2

±1
2

1
2

)
= 1

2

(
1 ±1
±1 1

)
.

MH sei die Jones-Matrix zu einem Linearpolarisator mit horizontaler Transmissionsach-
se, der also horizontal polarisiertes Licht erzeugt. Wenn die x-Achse horizontal verläuft,
gilt ϑ = 0◦ bzw. ϑ = ±180◦ und damit

MH =
(

1 0
0 0

)
.
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MV sei die Jones-Matrix zu einem Linearpolarisator mit vertikaler Transmissionsachse,
der also vertikal polarisiertes Licht erzeugt. Wenn die y-Achse vertikal verläuft, gilt
ϑ = ±90◦ bzw. ϑ = ±270◦ und damit

MV =
(

0 0
0 1

)
.

• Polarisationsdreher um den Winkel β :
Die Jones-Matrix Mβ soll den Jones-Vektor J⃗ϑ =

( cos ϑ
sin ϑ

)
durch Drehung der Polarisati-

onsebene um den Winkel β in den Jones-Vektor J⃗ϑ+β überführen gemäß J⃗ϑ
Mβ−→ J⃗ϑ+β :

MβJ⃗ϑ =
(
a b
c d

)(
cosϑ
sinϑ

)
=
(

cos(ϑ+ β)
sin(ϑ+ β)

)
= J⃗ϑ+β ⇒

a cosϑ+ b sinϑ = cos(ϑ+ β) , c cosϑ+ d sinϑ = sin(ϑ+ β) ,

(Anwendung der Additionstheoreme)

cosβ cosϑ− sin β sinϑ = cos(ϑ+ β) , sin β cosϑ+ cosβ sinϑ = sin(ϑ+ β) .

Der Koeffizientenvergleich liefert schließlich

a = cosβ , b = − sin β , c = sin β , d = cosβ ,

Mβ =
(

cosβ − sin β
sin β cosβ

)
. (52)

• Phasenverzögerer um den Phasenwinkel bzw. die Phasendifferenz ∆Φ :
Für das einfallende Licht schreiben wir gemäß (51)

Ẽ =
(
E0x · eiϕ0x

E0y · eiϕ0y

)
=
(
Ẽx

Ẽy

)
.

mit den Phasenkonstanten ϕ0x und ϕ0y. Dabei wurde der variable Phasenanteil ei(kz−ωt)

unterdrückt. Ein Phasenverzögerer verändert die Phasen des einfallenden Lichts wie
folgt: (

Ẽx

Ẽy

)
−→

(
E0x · ei(ϕ0x+ Φx)

E0y · ei(ϕ0y+ Φy)

)
=
(
Ẽx · eiΦx

Ẽy · eiΦy

)
.

Es resultiert dabei zwischen den Komponenten Ẽx und Ẽy die ggf. zusätzliche

Phasendifferenz ∆Φ = Φy − Φx ,

d. h. eine der beiden Komponenten ist nach der Passage des Phasenverzögerers gegenüber
der anderen Komponente verzögert. Die Matrixgleichung dafür lautet

M∆Φ · Ẽ =
(

eiΦx 0
0 eiΦy

)(
Ẽx

Ẽy

)
=
(
Ẽx · eiΦx

Ẽy · eiΦy

)
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mit der allgemeinen Jones-Matrix für Phasenvergögerer

M
(...)

∆Φ =
(

eiΦx 0
0 eiΦy

)
. (53)

Der phasenverzögerten Komponente entspricht die langsame Achse des Phasenverzöge-
rers. Orthogonal dazu besitzt der Phasenverzögerer demzufolge seine schnelle Achse.
Die schnelle Achse der Phasenverzögerer wird in den zugehörigen Jones-Matrizen als
hochgestellter Index angegeben. Ausgehend von der Tabelle „Zirkulare Polarisation“
im Abschnitt 7 gilt folglich

Φy − Φx = ∆Φ > 0 ⇒ Φy > Φx ⇒ M
(x)

∆Φ , x-Achse ist schnelle Achse ,

Φy − Φx = ∆Φ < 0 ⇒ Φy < Φx ⇒ M
(y)

∆Φ , y-Achse ist schnelle Achse ,

wobei die x-Achse horizontal und die y-Achse vertikal verlaufen soll.
Wichtige Phasenverzögerer sind die Viertelwellenverzögerungsplatte, kurz

λ
4 -Platte, entsprechend ∆Φ = ±π

2 ,
die Halbwellenverzögerungsplatte, kurz

λ
2 -Platte, entsprechend ∆Φ = ±π,

und evl. auch die Achtelwellenverzögerungsplatte, kurz
λ
8 -Platte, entsprechend ∆Φ = ±π

4 .
Ausgehend von (53) können wir die zugehörigen Jones-Matrizen beispielsweise wie folgt
bestimmen:

λ/4 -Platte :
Für Φy = π

2 , Φx = 0 ⇒ ∆φ = π
2 > 0 gilt

M
(x)
λ/4 =

(
e0 0
0 ei π

2

)
=
(

1 0
0 i

)
.

Für Φy = 0 , Φx = π
2 ⇒ ∆φ = −π

2 < 0 gilt

M
(y)
λ/4 =

(
ei π

2 0
0 e0

)
=
(

i 0
0 1

)
.

Für Φy = 0 , Φx = −π
2 ⇒ ∆φ = π

2 > 0 gilt

M
(x)
λ/4 =

(
e−i π

2 0
0 e0

)
=
(
−i 0

0 1

)
.

Für Φy = −π
2 , Φx = 0 ⇒ ∆φ = −π

2 < 0 gilt

M
(y)
λ/4 =

(
e0 0
0 e−i π

2

)
=
(

1 0
0 −i

)
.

Für Φy = π
4 , Φx = −π

4 ⇒ ∆φ = π
2 > 0 gilt

M
(x)
λ/4 =

(
e−i π

4 0
0 ei π

4

)
= e−i π

4

(
1 0
0 i

)
= 1√

2

(
1− i 0

0 1 + i

)
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Für Φy = −π
4 , Φx = π

4 ⇒ ∆φ = −π
2 < 0 gilt

M
(y)
λ/4 =

(
ei π

4 0
0 e−i π

4

)
= ei π

4

(
1 0
0 −i

)
= 1√

2

(
1 + i 0

0 1− i

)
.

Dabei haben wir die folgende Beziehung verwendet:

e±i π
4 = cos(±45◦) + i sin(±45◦) = 1√

2
± i 1√

2
= 1√

2
(
1± i

)
.

λ/2 -Platte :
Für Φy = π , Φx = 0 ⇒ ∆φ = π > 0 gilt

M
(x)
λ/2 =

(
e0 0
0 eiπ

)
=
(

1 0
0 −1

)
.

Für Φy = 0 , Φx = π ⇒ ∆φ = −π < 0 gilt

M
(y)
λ/2 =

(
eiπ 0
0 e0

)
=
(
−1 0

0 1

)
= −M (x)

λ/2 .

Für Φy = π
2 , Φx = −π

2 ⇒ ∆φ = π > 0 gilt

M
(x)
λ/2 =

(
e−i π

2 0
0 ei π

2

)
=
(
−i 0

0 i

)
.

Für Φy = −π
2 , Φx = π

2 ⇒ ∆φ = −π < 0 gilt

M
(y)
λ/2 =

(
ei π

2 0
0 e−i π

2

)
=
(

i 0
0 −i

)
= −M (x)

λ/2 .

Die Voreilung ∆φ = +π und die Nacheilung ∆φ = −π sind physikalisch äquivalent.

λ/8 -Platte :
Für Φy = π

4 , Φx = 0 ⇒ ∆φ = π
4 > 0 gilt

M
(x)
λ/8 =

(
e0 0
0 ei π

4

)
=
(

1 0
0 ei π

4

)
.

Für Φy = 0 , Φx = π
4 ⇒ ∆φ = −π

4 < 0 gilt

M
(y)
λ/8 =

(
ei π

4 0
0 e0

)
=
(

ei π
4 0

0 1

)
.

Anwendungsbeispiele

• Das einfallende Licht sei linear polarisiert mit α = +45◦ gemäß dem Jones-Vektor
J⃗45◦ und laufe durch einen Linearpolarisator mit horizontaler Transmissionsachse
entsprechend der Jones-Matrix MH :

MH J⃗45◦ =
(

1 0
0 0

)
1√
2

(
1
1

)
= 1√

2

(
1
0

)
= 1√

2
J⃗H .

Das austretende Licht ist die horizontale Komponente des einfallenden Lichts und
demzufolge horizontal polarisiert.

67



• Das einfallende Licht sei horizontal polarisiert gemäß dem Jones-Vektor J⃗H und laufe
durch eine λ

4 -Platte mit schneller y-Achse entsprechend der Jones-Matrix M (y)
λ/4 :

M
(y)
λ/4 J⃗H =

(
i 0
0 1

) (
1
0

)
=
(

i
0

)
= ei π

2

(
1
0

)
= ei π

2 J⃗H .

Der Vergleich von einfallendem und austretendem Licht zeigt:

J⃗H =̂ E⃗ =

E0 ei(kx−ωt)

0
0

 −→ ei π
2 J⃗H =̂ E⃗ =

E0 ei
(

kx−ωt+ π
2

)
0
0

 .

Das austretende Licht ist also ebenfalls horizontal polarisiert und besitzt die gleiche
Amplitude wie das einfallende Licht. Allerdings läuft die Phase des austretenden Lichts
der Phase des einfallenden Lichts infolge der Verzögerung der x-Komponente durch die
λ
4 -Platte um π

2 hinterher (siehe Tabelle „Zirkulare Polarisation“).

• Das einfallende Licht sei rechtszirkular polarisiert gemäß dem Jones-Vektor J⃗R und
laufe durch einen Linearpolarisator mit vertikaler Transmissionsachse entsprechend der
Jones-Matrix MV :

MV J⃗R =
(

0 0
0 1

)
1√
2

(
1
−i

)
= 1√

2

(
0
−i

)
= e−i π

2
√

2

(
0
1

)
= e−i π

2
√

2
J⃗V .

Das austretende Licht ist die vertikale Komponente des einfallenden Lichts und demzu-
folge vertikal polarisiert. In Übereinstimmung mit der Tabelle „Zirkulare Polarisation“
zeigt der Faktor −i = e−i π

2 , dass die herausgefilterte vertikale Komponente der unter-
drückten horizontalen Komponente um π

2 vorauseilt.

• Das einfallende Licht sei linear polarisiert mit dem Neigungswinkel α = 45◦ und laufe
durch eine λ

4 -Platte mit schneller x-Achse :

M
(x)
λ/4 J⃗45◦ =

(
1 0
0 i

)
1√
2

(
1
1

)
= 1√

2

(
1
i

)
= J⃗L .

Das austretende Licht ist linkszirkular polarisiert.
Wollen wir zirkular polarisiertes Licht erzeugen, brauchen wir also nur mit einem
entsprechenden Polarisationsfilter linear polarisiertes Licht mit einem Neigungswinkel
von ±45◦ bzw. betragsgleichen Komponenten zu erzeugen und dieses anschließend
durch eine λ

4 -Platte laufen zu lassen.

• Das einfallende Licht sei linkszirkular polarisiert und laufe durch eine λ
4 -Platte mit

schneller x-Achse :

M
(x)
λ/4 J⃗L =

(
1 0
0 i

)
1√
2

(
1
i

)
= 1√

2

(
1
−i

)
= J⃗−45◦ .

Das austretende Licht ist linear polarisiert mit dem Neigungswinkel α = −45◦

• Das einfallende Licht sei linear polarisiert mit dem Neigungswinkel α = 45◦ und laufe
durch eine λ

8 -Platte mit schneller x-Achse :

M
(x)
λ/8 J⃗45◦ =

(
1 0
0 ei π

4

)
1√
2

(
1
1

)
= 1√

2

(
1

ei π
4

)
= J⃗E .
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Wegen ∆ϕ = π
4 ̸= mπ + π

2 ist das austretende Licht nicht mit längs der x- oder längs
der y-Achse ausgerichteter Hauptachse der Polarisationsellipse elliptisch polarisiert,
nicht zirkular polarisiert und selbstverständlich nicht linear polarisiert. Und auch wenn
die Komponenten von J⃗E hier gemäß

|ei π
4 | =

√
ei π

4 · e−i π
4 =
√

e0 = 1

betragsgleich sind, so ist das austretende Licht in diesem Fall dennoch elliptisch polari-
siert – jedoch mit dem Neigungswinkel α von der positiven x-Achse zur Hauptachse
der Polarisationsellipse. Bestimmen wir also α unter Berücksichtigung von

J⃗E =
( 1√

2
1√
2 · e

i π
4

)
⇒ Ẽ =

(
E0x

E0y · ei π
4

)
und E0x = E0y ⇒

E0y

E0x
= 1

mit (48) :

tan 2α =
2 E0y

E0x
· cos ∆ϕ

1−
(

E0y

E0x

)2 =
2 E0y

E0x
·
(

+ 1√
2

)
1−

(
E0y

E0x

)2 ⇒

lim
E0x→E0y

( tan 2α) = +∞ ⇒ 2α = 90◦ , α = 45◦ .

Das austretende Licht ist also elliptisch polarisiert mit einem Neigungswinkel der
Polarisationsellipse von α = 45◦.

Es bestätigt sich in diesem Fall, dass bei elliptischer Polarisation mit geneigter Haupt-
achse der Polarisationsellipse eine der Komponenten von J⃗E komplex ist mit nicht
verschwindendem Realteil und nicht verschwindendem Imaginärteil, denn

ei π
4 = cos 45◦ + i sin 45◦ = 1√

2
+ i 1√

2
.

• Das einfallende Licht sei linkszirkular polarisiert und laufe durch eine λ
8 -Platte mit

schneller x-Achse :

M
(x)
λ/8 J⃗L =

(
1 0
0 ei π

4

)
1√
2

(
1
i

)
= 1√

2

(
1

ei 3π
4

)
= J⃗E .

Im austretenden Licht ist also ∆ϕ = 3π
4 = 135◦ ⇒ cos ∆ϕ = − 1√

2 und die Komponen-
ten des zugehörigen Jones-Vektors sind betragsgleich. Für den Neigungswinkel α der
Polarisationsellipse erhalten wir damit:

tan 2α =
2 E0y

E0x
· cos ∆ϕ

1−
(

E0y

E0x

)2 =
2 E0y

E0x
·
(
− 1√

2

)
1−

(
E0y

E0x

)2 ⇒

lim
E0x→E0y

( tan 2α) = −∞ ⇒ 2α = −90◦ , α = −45◦ .

Das austretende Licht ist elliptisch polarisiert mit einem Neigungswinkel der Polarisa-
tionsellipse von α = −45◦ .
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• Mit einem Polarisationsfilter erzeugen wir vertikal polarisiertes Licht mit dem Jones-
Vektor J⃗V und lassen dieses der Reihe nach zuerst gemäß (52) durch einen Polarisati-
onsdreher mit einem Drehwinkel von β = 45◦, dann durch eine λ

4 -Platte mit schneller
y-Achse und schließlich durch einen Linearpolarisator mit vertikaler Transmissionsachse
laufen :

MV ·M
(y)
λ/4 ·M(β=45◦)︸ ︷︷ ︸ · J⃗V =

(
0 0
0 1

)
·
(

i 0
0 1

)
· 1√

2

(
1 −1
1 1

)
︸ ︷︷ ︸

1√
2

(
0 0
1 1

)
·
(

0
1

)

= 1√
2

(
0
1

)
= 1√

2
J⃗V .

Das austretenden Licht ist vertikal polarisiert, besitzt also nur die y-Komponente des
E⃗-Feldes. Allerdings ist diese Komponente durch die Polarisationsdrehung mittels
M(β=45◦) um den Faktor 1√

2 kleiner als im einfallenden Licht. Die vom Polarisati-
onsdreher gebildete x-Komponente wird durch das Polarisationsfilter mit vertikaler
Transmissionsachse am Ende unterdrückt, sodass die Intensität des austretenden Lichts
gegenüber dem einfallenden Licht um den Faktor ( 1√

2)2 = 1
2 kleiner ist.
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7.5 Intensität des polarisierten Lichts im Vakuum

Siehe auch Kapitel 2 .

Der Poynting-Vektor
S⃗ = E⃗ × H⃗ = ε0c

2
0 E⃗ × B⃗

für das Vakuum beschreibt die (momentane) Energiestromdichte eines elektromagnetischen
Feldes bzw. des Lichts. Die sich daraus ergebende

Intensität I =
〈∣∣S⃗∣∣〉 = ε0c

2
0

〈∣∣E⃗ × B⃗
∣∣〉 = ε0c

2
0

〈
E · 1

c0
E
〉

= ε0c0
〈
E2〉

ist dann das zeitliche Mittel des Betrags des Poynting-Vektors.

Die Intensität einer linear polarisierten ebenen elektromagnetischen Welle

E⃗(r⃗, t) = E⃗0

cos(kz − ωt+ ϕ0)
cos(kz − ωt+ ϕ0)

0

 =

E0x · cos(kz − ωt+ ϕ0)
E0y · cos(kz − ωt+ ϕ0)

0

 ,

die sich im Vakuum in positiver z-Richtung ausbreitet, ist mit dem Mittelwert
⟨cos2 α⟩ = 1

2 und mit

E2(t) = E2
0x cos2(kz − ωt+ ϕ0) + E0y cos2(kz − ωt+ ϕ0) = E2

0 cos2(kz − ωt+ ϕ0) :

lineare Polarisation : I = ε0c0
〈
E2〉 = ε0c0

2 E2
0 .

Die Intensität der zirkular polarisierten ebenen elektromagnetischen Welle

E⃗(r⃗, t) =

E0 · cos(kz − ωt)
E0 · sin(kz − ωt)

0

 ,

die sich im Vakuum in positiver z-Richtung ausbreitet, ist mit sin2 α+ cos2 α = 1 und mit

E2(t) = E2
0 cos2(kz − ωt) + E2

0 sin2(kz − ωt) = E2
0 = E2 = const :

zirkulare Polarisation : I = ε0c0
〈
E2〉 = ε0c0E

2
0 = ε0c0E

2 .
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8 Polarisation des Lichts in Bra-Ket-Notation
Die Bra-Ket-Notation geht auf Paul Dirac zurück und wird deshalb auch Dirac-Notation
genannt. Sie dient insbesondere der bequemeren mathematischen Behandlung der Quanten-
physik.

8.1 Der Umgang mit komplexen Vektoren und Matrizen in
Bra-Ket-Notation

Als Einstieg in dieses Kapitel bzw. zur Erinnerung geben wir kurzgefasst die wichtigsten
Regeln zum Umgang mit komplexen Vektoren und Matrizen in der Bra-Ket-Notation an
und verweisen auf das diesbezüglich etwas ausführlichere
Kapitel 12 Rechnen mit komplexen Vektoren und Matrizen im Skript Mathematik – Einige
ausgewählte Themen für das Physikstudium.

• Zustandsvektoren :

Ket-Vektor (Spaltenvektor) |v⟩ :=


v1
v2
...
vi
...

 ,

Bra-Vektor (Zeilenvektor) ⟨v| :=
(
v∗

1 v∗
2 · · · v∗

i · · ·
)
.

• Adjungiert (hochgestellter Index †)
heißt komplex konjugiert (hochgestellter Index ∗) und zusätzlich transponiert (hochge-
stellter Index T ), also sinngemäß

† = (∗) T = ( T ) ∗ .
Beispiele:

Adjungieren der Matrix A : A† =
(
A∗)T =

(
AT)∗

,

Adjungieren des Spaltenvektors v⃗ := ( v1
v2 ) : v⃗ † =

(
v⃗ ∗)T :=

(
v∗

1 , v
∗
2
)
,

Adjungieren des Zustands-Ket-Vektors |v⟩ : |v⟩† =
(
|v⟩∗

)T = ⟨v| .

• Komplexes Standardskalarprodukt (kurz Skalarprodukt) ⟨αu |β v⟩ mit α, β ∈ C
ist hermitesch, im ersten Argument antilinear (konjugiert linear) und im zweiten
Argument linear :

⟨αu|β v⟩ = α∗⟨u|β v⟩ = α∗β ⟨u|v⟩ .

Ausgeschrieben in Zeilen- und Spaltenvektor erhält dieses Skalarprodukt dann die
Gestalt (

α∗u∗
1 α∗u∗

2 · · ·
)
·

βv1
βv2

...

 = α∗β
(
u∗

1 v1 + u∗
2 v2 + · · ·

)
.
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• Vollständige Orthonormalbasis (kurz VON-Basis) oder vollständiges Orthonormal-
system (kurz VONS) wie beispielsweise

{
|ai⟩
}

:
Die Basis-Bra-Vektoren ⟨ai| :=

(
0 · · · 0 a∗

i 0 · · · 0
)

und die

Basis-Ket-Vektoren |aj⟩ :=



0
...
0
aj

0
...
0


liefern als Skalarprodukt

⟨ai|aj⟩ =
(
⟨ai|aj⟩

)∗ = δij ⇒ ⟨ai|ai⟩ = 1 , ⟨ai|aj⟩ = 0

und als dyadisches Produkt ∑
i

|ai⟩⟨ai| =
∑

i

P̂i = 1

mit den Projektionsoperatoren P̂i = |ai⟩⟨ai| und der Einheitsmatrix bzw. dem
Identitätsoperator 1 .
Beispiel :

2∑
i=1
|ai⟩⟨ai| =

(
a1
0

)
·
(
a∗

1 0
)

+
(

0
a2

)
·
(
0 a∗

2
)

=
(
a1 a

∗
1 0

0 0

)
︸ ︷︷ ︸

P1

+
(

0 0
0 a2 a

∗
2

)
︸ ︷︷ ︸

P2

,

mit ai a
∗
i = a∗

i ai = ⟨ai|ai⟩ = 1 ⇒
2∑

i=1
|ai⟩⟨ai| =

(
1 0
0 1

)
= 1 .

• Das Skalarprodukt ci aus dem Zustandsvektor |v⟩ und dem Basis-Bra-Vektor |ai⟩ , also

ci = ⟨ai|v⟩ ,

ist die Projektion von |v⟩ auf |ai⟩, gesprochen: „Skalarprodukt v in ai“. ci ist somit die
komplexe skalare Vektorkomponente von |v⟩ „in Richtung“ des Basisvektors |ai⟩ .

• Entwicklungssatz – Darstellung (Entwicklung) eines (Zustands)vektors |v⟩ in der
VON-Basis

{
|ai⟩
}

im Cn :

|v⟩ =
∑

i

⟨ai|v⟩︸ ︷︷ ︸
ci = vi

|ai⟩ =
∑

i

vi |ai⟩ :=


v1
v2
...
vi
...

 =


⟨a1|v⟩
⟨a2|v⟩

...
⟨ai|v⟩

...

 , (54)

=
∑

i

|ai⟩⟨ai|︸ ︷︷ ︸
=1

v⟩ =
∑

i

P̂i|v⟩ = 1|v⟩ = |v⟩ . (55)
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Die Projektionen von |v⟩ auf die Basisvektoren |ai⟩ bzw. die Skalarprodukte |v⟩
in |ai⟩ sind die Entwicklungskoeffizienten vi ∈ C . In (54) steht ganz be-
wusst nicht das Gleichheitszeichen, sondern das := -Zeichen („definiert durch“). Die
skalaren Vektorkomponenten vi = ⟨ai|v⟩ sind nämlich nicht gleich den zugehörigen
(vektoriellen) Vektorkomponenten vi|ai⟩ = ⟨ai|v⟩|ai⟩ = |ai⟩⟨ai|v⟩ = P̂i|v⟩ , wie man
bei einem Vergleich von (54) und (55) feststellt und wodurch noch einmal die Bedeutung
des Indentitätsoperators 1 und der Projektionsoperatoren P̂i deutlich wird.

• Für Operatoren in der basisfreien bzw. abstrakten Form schreiben wir beispielsweise
Â.
Im konkreten Fall bezieht man sich jedoch auf eine geschickt gewählte VON-Basis.
Die dann in dieser Basis dargestellten Operatoren nehmen die Gestalt von Matrizen(
Aij

)
mit den Matrixelementen Aij an. Es gilt deshalb Â :=

(
Aij

)
.

Zur Erläuterung zeigen wir den Übergang von der basisfreien Darstellung zur Darstel-
lung in einer Basis mit einer Analogie am Beispiel des Zusammenhangs zwischen der
elektrischen Feldstärke E⃗ und der elektrischen Flussdichte D⃗ in anisotropen Materiali-
en, vermittelt durch die Permittivität ε = ε0 εr. Dabei ist die Permittivität ein Tensor
2. Stufe bzw. im konkreten Fall eine (3× 3)-Matrix mit den Matrixelementen εij :

Abstrakte, basisfreie Darstellung: D⃗ = ε E⃗ .
Darstellung in der Standardbasis

{
e⃗x, e⃗y, e⃗z

}
=
{

e⃗1, e⃗2, e⃗3
}

:

D⃗ =
3∑

i=1
Di e⃗i =

3∑
i=1

3∑
j=1

εij Ej e⃗j ,

D⃗ :=

D1
D2
D3

 =

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

E1
E2
E3

 .

• Hermitesche Operatoren :
Observablen werden repräsentiert durch Operatoren und realisieren sich in Gestalt von
Messwerten. Messwerte aber können nur reelle Zahlen sein. Deshalb sind alle zu den
üblichen Observablen in der Quantenmechanik gehörigen Operatoren hermitesch, d. h.
selbstadjungiert wie beispielsweise die Matrix

A =

 3 2 + i i
2− i 2 1− 2i
−i 1 + 2i 5

 = A† .

Hermitesche Operatoren bzw. die zugehörigen hermiteschen Matrizen besitzen nämlich
folgende Eigenschaften:

– Ihre Hauptdiagonalelemente sind reell.
– Ihre Eigenwerte sind reell und repräsentieren mögliche Messwerte wie z. B. in den

Eigenwertgleichungen Â|ψ⟩ = a|ψ⟩ bzw. Â|ψn⟩ = an|ψn⟩ .
– Ihre Eigenfunktionen sind orthogonal und bilden ein VONS.
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• Matrixdarstellung von Operatoren in der VON-Basis
{
|ai⟩
}

,
Matrixelement :
Die basisfreie Operatorgleichung

|v⟩ = Â |u⟩ (56)

erhält in der VON-Basis
{
|ai⟩
}

die Gestalt

|v⟩ =
∑

j

⟨aj |v⟩︸ ︷︷ ︸
vj

|aj⟩ = Â |u⟩ = Â
∑

j

⟨aj |u⟩︸ ︷︷ ︸
uj

|aj⟩

∑
j

vj |aj⟩ =
∑

j

uj Â|aj⟩ . (57)

Durch Multiplikation von (57) mit dem Basis-Bra-Vektor ⟨ai| von links erhalten wir∑
j

⟨ai|vj |aj⟩ =
∑

j

vj ⟨ai|aj⟩︸ ︷︷ ︸
δij

=
∑

j

uj ⟨ai|Â|aj⟩ ⇒

vi =
∑

j

⟨ai|Â|aj⟩︸ ︷︷ ︸
Aij

·uj , (58)

vi =
∑

j

Aij · uj ,

also die skalare Vektorkomponente vi des Vektors |v⟩ und die

Matrixelemente ⟨ai|Â|aj⟩ = Aij

in der VON-Basis
{
|ai⟩
}

. Aus den Matrixelementen Aij ergibt sich die
Matrixdarstellung

(
Aij

)
des Operators Â. Mit ihr erhalten wir

v1
v2
...
vi
...

 =
(
Aij

)


u1
u2
...
uj
...

 =


⟨a1|Â|a1⟩ ⟨a1|Â|a2⟩ · · · ⟨a1|Â|aj⟩ · · ·
⟨a2|Â|a1⟩ ⟨a2|Â|a2⟩ · · · ⟨a2|Â|aj⟩ · · ·

...
... . . . ...

⟨ai|Â|a1⟩ ⟨ai|Â|a2⟩ · · · ⟨ai|Â|aj⟩ · · ·
...

...
... . . .





u1
u2
...
uj
...

 .

Die Matrixdarstellung eines Operators Â ist also

Â :=
∑
i,j

Aij |ai⟩⟨aj | =
(
Aij

)
.

In der beispielsweise 2-dimensionalen VON-Basis
{
a1, a2

}
ist dies

A11|a1⟩⟨a1|+A12|a1⟩⟨a2|+A21|a2⟩⟨a1|+A22|a2⟩⟨a2|

= A11

(
1
0

)(
1 0

)
+A12

(
1
0

)(
0 1

)
+A21

(
0
1

)(
1 0

)
+A22

(
0
1

)(
0 1

)
=
(
A11 0
0 0

)
+
(

0 A12
0 0

)
+
(

0 0
A21 0

)
+
(

0 0
0 A22

)
=
(
A11 A12
A21 A22

)
. □
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Doch wie erhalten wir durch Anwendung des Operators Â auf den Vektor |u⟩ die
Darstellung des Vektors |v⟩ in der Form

|v⟩ = v1|a1⟩+ v2|a2⟩+ · · · + vi|ai⟩+ · · · =
∑

i

vi|ai⟩ ?

Wir multiplizieren (58) mit dem Basis-Ket-Vektor |ai⟩ und summieren über i :

|v⟩ =
∑

i

vi|ai⟩ =
∑

i

∑
j

⟨ai|Â|aj⟩ · uj

 |ai⟩

=
∑

i

⟨ai|v⟩︸ ︷︷ ︸
vi

|ai⟩ =
∑

ij

⟨ai|Â|aj⟩ · ⟨aj |u⟩︸ ︷︷ ︸
uj

|ai⟩

=
∑

i

|ai⟩⟨ai|︸ ︷︷ ︸
1

v⟩ =
∑

ij

|ai⟩⟨ai|Â|aj⟩⟨aj |︸ ︷︷ ︸
Â

u⟩ ,

|v⟩ = Â |u⟩ .

Wie man sieht, gilt für die Matrixdarstellung
(
Aij

)
eines Operators Â in der VON-Basis{

|ai⟩
}

auch

Â = 1Â1 :=
∑

ij

|ai⟩⟨ai|Â|aj⟩⟨aj | =
∑

ij

Aij |ai⟩⟨aj | =
(
Aij

)
.

• Synopse: Adjungierte
[

(AB)T = BTAT ⇒ (AB)† = B†A† ]
⋆ Bra-Vektor ⟨u| : ⟨u|† = |u⟩ .

⋆ Ket-Vektor ⟨v| : |v⟩† = ⟨v| .

⋆ Skalarprodukt ⟨u|v⟩ :(
⟨u|v⟩

)† = |v⟩†⟨u|† = ⟨v|u⟩ =
∑

i

v∗
i ui =

(
⟨u|v⟩

)∗
.

⋆ dyadisches Produkt |u⟩⟨v| :(
|u⟩⟨v|

)† = ⟨v|† |u⟩† = |v⟩⟨u| .

⋆ Matrix-Vektor-Produkt A|u⟩ = |v⟩ :(
A|u⟩

)† = |v⟩† = ⟨v| = |u⟩†A† = ⟨u|A† ,

wobei A† rechts von ⟨u| stehen muss, u. a. weil ⟨u| ein Zeilenvektor ist.

⋆ Matrix-Matrix-Vektor-Produkt A
(
B|u⟩

)
= |v⟩ :[

A
(
B|u⟩

)]†
= |v⟩† = ⟨v| =

(
⟨u|B†)A† .

Hierbei ist die Reihenfolge von Matrizen und Vektor zu beachten.
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8.2 Lineare Polarisation

8.2.1 VON-Basis, Bra- und Ket-Vektoren

Als VON-Basis wählen wir die Jones-Vektoren J⃗H für horizontal bzw. längs der x-Achse
polarisiertes und J⃗V für vertikal bzw. längs der y-Achse polarisiertes Licht. In der Bra-Ket-
Notation schreiben wir für die Basisvektoren

J⃗H → |H⟩ und J⃗ †
H → ⟨H| ,

J⃗V → |V ⟩ und J⃗ †
V → ⟨V | .

Damit erhält die VON-Basis die Gestalt{
|ai⟩
}

=
{
|a1⟩ , |a2⟩

}
−→ =

{
|H⟩ , |V ⟩

}
=
{(

1
0

)
,

(
0
1

)}
,

sodass beispielsweise

⟨ai|aj⟩ = δij

−→ = ⟨H|V ⟩ =
(
1 0

)(0
1

)
= 0 ,

−→ = ⟨V |V ⟩ =
(
0 1

)(0
1

)
= 1

und ∑
i

|ai⟩⟨ai| =
∑

i

Pi = 1

−→ = |H⟩⟨H|+ |V ⟩⟨V | =
(

1
0

)(
1 0

)
+
(

0
1

)(
0 1

)
=
(

1 0
0 0

)
+
(

0 0
0 1

)
=
(

1 0
0 1

)
= 1

gilt. Wir werden jetzt linear polarisiertes Licht bzw. das linear polarisierte optische Feld

Ẽ :=
(
E0x

E0y

)
= E0

(
cosα
sinα

)
= E0 · J⃗P ⇒

Ẽ = E0xe⃗x + E0ye⃗y = E0 cosα·e⃗x + E0 sinα·e⃗y =
∑

i

(
e⃗i · Ẽ

)
·e⃗i , i ∈ {x, y} ,

mit dem Neigungswinkel α zur positiven x-Achse in der Bra-Ket-Notation und in der oben
gewählten VON-Basis darstellen. Damit gilt für den Jones-Vektor J⃗P :

J⃗P → cosα|H⟩+ sinα|V ⟩ und J⃗ †
P → cosα⟨H|+ sinα⟨V | .

Analog zur Darstellung eines Bra-Vektors

|u⟩ =
∑

i

⟨ai|u⟩︸ ︷︷ ︸
= ui

|ai⟩ =
∑

i

|ai⟩⟨ai︸ ︷︷ ︸
=1

|u⟩
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in der VON-Basis
{
|ai⟩
}

wird demzufolge das linear polarisierte optische Feld Ẽ dargestellt
durch den Bra-Vektor |e⟩ gemäß

E0 · J⃗P −→ |e⟩ = E0 cosα︸ ︷︷ ︸
⟨H|e⟩ = E0x

|H⟩+ E0 sinα︸ ︷︷ ︸
⟨V |e⟩ = E0y

|V ⟩ ,

Ẽ −→ |e⟩ = ⟨H|e⟩|H⟩+ ⟨V |e⟩|V ⟩ = E0x|H⟩+ E0y|V ⟩ . (59)

8.2.2 Polarisationsfilter mit horizontaler Transmissionsache

Analog zur Wirkung des Operators Â auf den Bra-Vektor |u⟩ gemäß

basisfrei : |v⟩ = Â |u⟩ , (60)

Basis
{
|ai⟩
}

: |v⟩ =
∑

ij

⟨ai|Â|aj⟩ · ⟨aj |u⟩|ai⟩ , (61)

vi =
∑

j

⟨ai|Â|aj⟩︸ ︷︷ ︸
Aij

· ⟨aj |u⟩︸ ︷︷ ︸
uj

=
∑

j

Aij · uj ⇒

|v⟩ :=
(
Aij

)

u1
u2
...
uj
...


lassen wir jetzt die Jones-Matrix MH für das Polarisationsfilter, das die horizontal polari-
sierte Komponente des einfallenden Lichts herausfiltert, auf linear polarisiertes Licht (59)
entsprechend dem Jones-Vektor J⃗P mit dem Neigungswinkel α wirken. Das einfallende Licht
indizieren wir mit „in“ und das austretende mit „out“ :

Ẽout = MH · Ẽin = MH · E0 J⃗P︸ ︷︷ ︸
Ẽin

= E0 ·MH J⃗P , (62)

Ẽout := E0 ·

(
1 0
0 0

)(
cosα
sinα

)
=
(

1 0
0 0

)(
E0 · cosα
E0 · sinα

)
=
(
E0 cosα

0

)
=
(
E0x

0

)
. (63)

Wie erwartet wird die horizontale x-Komponente von Ẽin, also die Projektion von Ẽin auf
den Basisvektor J⃗H, herausgefiltert.

Weil wir die Jones-Matrizen im Abschnitt 7.4 bezüglich der VON-Basis
{

J⃗H, J⃗V
}

berechnet
hatten,1 sind die Elemente der Jones-Matrizen gleich den Matrixelementen des Operators Â
bzw. der Matrix

(
Aij

)
. Das bedeutet, dass der Operator Â die Funktion des polarisierenden

optischen Elements bzw. hier des Polarisationsfilters repräsentiert. Kurz gesagt:

MH =
(

1 0
0 0

)
= |H⟩⟨H|

ist der Projektionsoperator für die horizontale Projektion und repräsentiert damit das ent-
sprechende Polarisationsfilter.

1Eine VON-Basis legt man fest. Die Matrixdarstellung eines Operators jedoch muss man „finden“.
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Den Übergang von der Gleichung (62) im Jones-Formalismus zur Gleichung

|eout⟩ = MH|ein⟩

in Bra-Ket-Notation erläutern wir, indem wir, angepasst an unseren Fall, zunächst die
allgemeine basisfreie Gleichung (60) mittels (61) in der speziellen

VON-Basis
{
|ai⟩
}

=
{
|a1⟩, |a2⟩

}
darstellen. Dabei verwenden wir für den Operator Â, ebenfalls angepasst an unseren Fall,
die Matrix |a1⟩⟨a1| gemäß

Â := |a1⟩⟨a1| =
(

1
0

)(
1 0

)
=
(

1 0
0 0

)
= MH = |H⟩⟨H| :

|v⟩ = Â |u⟩

=
2∑

i=1

2∑
j=1
⟨ai|Â|aj⟩ · ⟨aj |u⟩|ai⟩ =

2∑
i=1

2∑
j=1
⟨ai|a1⟩⟨a1|aj⟩ · ⟨aj |u⟩|ai⟩

=
A11 = 1︷ ︸︸ ︷

⟨a1|a1⟩︸ ︷︷ ︸
1

⟨a1|a1⟩︸ ︷︷ ︸
1

· ⟨a1|u⟩︸ ︷︷ ︸
u1

|a1⟩+
A12 = 0︷ ︸︸ ︷

⟨a1|a1⟩︸ ︷︷ ︸
1

⟨a1|a2⟩︸ ︷︷ ︸
0

· ⟨a2|u⟩︸ ︷︷ ︸
u2

|a1⟩ +

0︷ ︸︸ ︷
⟨a2|a1⟩

1︷ ︸︸ ︷
⟨a1|a1⟩︸ ︷︷ ︸

A21 = 0

·
︷ ︸︸ ︷
⟨a1|u⟩

u1

|a2⟩+
0︷ ︸︸ ︷

⟨a2|a1⟩
0︷ ︸︸ ︷

⟨a1|a2⟩︸ ︷︷ ︸
A22 = 0

·
︷ ︸︸ ︷
⟨a2|u⟩

u2

|a2⟩ = ⟨a1|u⟩︸ ︷︷ ︸
u1

|a1⟩ (64)

=
(
A11 u1 +A12 u2

)
|a1⟩ +

(
A21 u1 +A22 u2

)
|a2⟩ = A11 u1|a1⟩ = u1|a1⟩ ,

|v⟩ :=
(
v1

v2

)
=
(
A11 A12

A21 A22

)
·

(
u1

u2

)
=
(
A11u1

0

)
=
(
u1

0

)
. (65)

Ausgehend von (64) und (65) können wir jetzt unter Berücksichtigung von

|v⟩ = Â|u⟩ ⇒



|a1⟩ = |H⟩ , |a2⟩ = |V ⟩ ,

|u⟩ = |ein⟩ = E0
(

cosα|H⟩+ sinα|V ⟩
)

= E0x|H⟩+ E0y|V ⟩ = Ẽin ,

u1 = E0 cosα = E0x , u2 = E0 sinα = E0y ,

|v⟩ = |eout⟩ = Ẽout
(66)

die Wirkung des Polarisationsfilters mit der

Jones-Matrix MH =
(
Aij

)
=: Â

auf linear polarisiertes Licht mit dem Jones-Vektor J⃗P in Bra-Ket-Notation zeigen:

|eout⟩ = |H⟩⟨H|ein⟩

= ⟨H|ein⟩|H⟩ = ⟨H|E0
(
cosα|H⟩+ sinα|V ⟩

)
|H⟩

= E0 cosα︸ ︷︷ ︸
E0x

⟨H|H⟩︸ ︷︷ ︸
1

|H⟩ + E0 sinα︸ ︷︷ ︸
E0y

⟨H|V ⟩︸ ︷︷ ︸
0

|H⟩ ,

|eout⟩ = E0x|H⟩ ,

|eout⟩ :=
(
E0x

0

)
.

Dieses Ergebnis stimmt mit (63) überein.
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8.2.3 Polarisationsfilter mit Transmissionsachse im Winkel ϑ

Die Wirkung des Polarisationsfilters mit einer Transmissionsachse im Winkel ϑ zur positiven
x-Achse auf linear polarisiertes Licht entsprechend dem Jones-Vektor J⃗P wird mit Hilfe des
Jones-Formalismus beschrieben durch

Ẽout = Mϑ · Ẽin = Mϑ · E0 J⃗P︸ ︷︷ ︸
Ẽin

= E0 ·Mϑ J⃗P , (67)

Ẽout :=
(

cos2 ϑ cosϑ sinϑ
sinϑ cosϑ sin2 ϑ

)
· E0

(
cosα
sinα

)
=
(

cos2 ϑ cosϑ sinϑ
sinϑ cosϑ sin2 ϑ

)(
E0x

E0y

)

:= E0 ·

(
cos2 ϑ cosα+ cosϑ sinϑ sinα
sinϑ cosϑ cosα+ sin2 ϑ sinα

)
.

Bei der Darstellung von (67) in der Bra-Ket-Notation unter Berücksichtigung von (66) und
mit der

Jones-Matrix Mϑ =
(
Aij

)
=: Â

zeigt sich, wie im Abschnitt 8.2.2 erläutert, dass die Elemente der Jones-Matrix Mϑ gleich
den Matrixelementen des entsprechenden Operators Â sind. Wir wollen dies deshalb lediglich
mit der Berechnung eines Matrixelements analog zu (64) demonstrieren:

A21 = ⟨a2|Mϑ|a1⟩ =
(
0 1

)( cos2 ϑ cosϑ sinϑ
sinϑ cosϑ sin2 ϑ

)(
1
0

)

=
(
0 1

)( cos2 ϑ

sinϑ cosϑ

)
= sinϑ cosϑ = A21 . □

Damit erhalten wir schließlich

|eout⟩ =

A11︷ ︸︸ ︷
cos2 ϑ

u1︷ ︸︸ ︷
⟨H|u⟩ |H⟩+

A12︷ ︸︸ ︷
cosϑ sinϑ

u2︷ ︸︸ ︷
⟨V |u⟩ |H⟩ +

sinϑ cosϑ︸ ︷︷ ︸
A21

⟨H|u⟩︸ ︷︷ ︸
u1

|V ⟩ + sin2 ϑ︸ ︷︷ ︸
A22

⟨V |u⟩︸ ︷︷ ︸
u2

|V ⟩

= cos2 ϑ ·
E0x︷ ︸︸ ︷

E0 cosα |H⟩+ cosϑ sinϑ ·
E0y︷ ︸︸ ︷

E0 sinα |H⟩ +

sinϑ cosϑ · E0 cosα︸ ︷︷ ︸
E0x

|V ⟩ + sin2 ϑ · E0 sinα︸ ︷︷ ︸
E0y

|V ⟩ ,

|eout⟩ :=
(

cos2 ϑ cosϑ sinϑ
sinϑ cosϑ sin2 ϑ

)(
E0x

E0y

)
. □
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8.3 Zirkulare Polarisation

In Analogie zum Jones-Formalismus (siehe Tabelle 2) schreiben wir unter Verwendung
der VON-Basis

{
|H⟩ := ( 1

0 ) , |V ⟩ := ( 0
1 )
}

für linkszirkular(L)-polarisiertes und
rechtszirkular(R)-polarisiertes Licht in Bra-Ket-Notation2

L : J⃗L = 1√
2

(
1
i

)
−→ |R⟩ = |σ+⟩ = 1√

2
(
|H⟩+ i|V ⟩

)
:= 1√

2

(
1
i

)
,

R : J⃗R = 1√
2

(
1
−i

)
−→ |L⟩ = |σ−⟩ = 1√

2
(
|H⟩ − i|V ⟩

)
:= 1√

2

(
1
−i

)
.

Dabei sind die Faktoren ±i = e±i π
2 Phasenfaktoren und stehen für die Unterschiede ∆ϕ = ±π

2
der Phase von Ẽy gegenüber Ẽx.

Um Verwechselungen zwischen den Bezeichnungen L, R und |R⟩, |L⟩ zu vermeiden, schreiben
wir in der Bra-Ket-Notation für linkszirkulare Polarisationszustände |σ+⟩ und für rechtszir-
kulare Polarisationszustände |σ−⟩ .

8.4 Photonenspin

Der Begriff Photonenspin wurde im Kapitel 1 eingeführt. Den Spin sz eines sich in z-Richtung
fortbewegenden Photons erhalten wir durch die Anwendung des

Photonen-Spinoperators ŝz := ℏ
(

0 −i
i 0

)
auf die Zustandsvektoren |σ+⟩ oder |σ−⟩ dieses Photons :

ŝz|σ+⟩ = ℏ
(

0 −i
i 0

)
· 1√

2

(
1
i

)
= ℏ · 1√

2

(
1
i

)
= ℏ |σ+⟩ (68)

⇒ sz = ℏ bzw. s⃗ =

0
0
ℏ

 ,

ŝz|σ−⟩ = ℏ
(

0 −i
i 0

)
· 1√

2

(
1
−i

)
= ℏ · 1√

2

(
−1
i

)
= −ℏ |σ−⟩ (69)

⇒ sz = −ℏ bzw. s⃗ =

 0
0
−ℏ

 .

Die Matrix
( 0 −i

i 0
)

ist wie die Pauli-Matrizen hermitesch, unitär (mit Determinante −1)
und spurlos. Deshalb sind ihre Eigenwerte reell mit Betrag 1 und in der Summe gleich Null.
Folglich sind ihre Eigenwerte +1 und −1 . Und die normierten Eigenvektoren3 sind

|σ+⟩ = 1√
2

(
1
i

)
zum Eigenwert +1 und |σ−⟩ = 1√

2

(
1
−i

)
zum Eigenwert −1 .

2Siehe dazu: Wolfgang Demtröder, Springer-Lehrbuch, Experimentalphysik 2 – Elektrizität und Optik, 3.
Auflage, Springer-Verlag, Berlin, Heidelberg, New York, 2004, Seite 193.

3Alle Vielfachen von Eigenvektoren sind auch Eigenvektoren. Deshalb findet man in diesem Fall
bei der Berechnung beispielsweise mit einem „Online-Eigenvektoren-Berechner“ auch die Eigenvektoren( −i

1
)

= −i
√

2 · |σ+⟩ zum Eigenwert +1 und
( i

1
)

= i
√

2 · |σ−⟩ zum Eigenwert −1 .

81



Die Anwendung des Photonen-Spinoperators auf die Basis-Zustände |H⟩ und |V ⟩ liefert

ŝz ·

|H⟩|V ⟩ = ℏ
(

0 −i
i 0

)
·

( 1
0 )

( 0
1 )

= ℏ ·

 ( 0
i )(−i
0
) =

 iℏ |V ⟩

−iℏ |H⟩

und damit keine physikalisch sinnvollen Ergebnisse, weil |H⟩ und |V ⟩ keine Eigenzustände
zum Operator ŝ sind und weil in diesem Fall komplexwertige Messergebnisse für den Spin
resultieren würden. Gemäß den Eigenwertgleichungen (68) und (69) gehören nämlich zum
Operator ŝz die Eigenzustände |σ+⟩(ℏ) und |σ−⟩(−ℏ) mit den Eigenwerten ℏ und −ℏ.
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9 Tabellen: Jones-Vektoren und Jones-Matrizen

Tabelle 1 Jones-Vektoren

Polarisation Jones-Vektor Bra-Ket-Notation

linear in x-Richtung (horizontal) J⃗H =
( 1

0

)
|H⟩

linear in y-Richtung (vertikal) J⃗V =
( 0

1

)
|V ⟩

linear mit Neigungswinkel ±45◦ J⃗±45◦ = 1√
2

( 1
±1
)

|D⟩ = 1√
2
(
|H⟩+ |V ⟩

)
linear mit Neigungswinkel α J⃗P =

( cosα
sinα

)
cosα|H⟩+ sinα|V ⟩

linkszirkular J⃗L = 1√
2

( 1
i

)
|σ+⟩ = 1√

2
(
|H⟩+ i |V ⟩

)
rechtszirkular J⃗R = 1√

2

( 1
−i
)

|σ−⟩ = 1√
2
(
|H⟩ − i |V ⟩

)
elliptisch allgemein J⃗E = 1√

E2
0x+E2

0y

(
E0x

E0y ei∆ϕ

)
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Tabelle 2 Jones-Matrizen, Abkürzung TA für Transmissionsachse.

optisches Element Jones-Matrix

Polarisationsfilter – TA horizontal MH =
(

1 0
0 0

)

Polarisationsfilter – TA vertikal MV =
(

0 0
0 1

)

Polarisationsfilter – TA im Winkel ±45◦ M±45◦ = 1
2

(
1 ±1
±1 0

)

Polarisationsfilter – TA im Winkel ϑ Mϑ =
(

cos2 ϑ cosϑ sinϑ
sinϑ cosϑ sin2 ϑ

)

Polarisationsdreher um Winkel β Mβ =
(

cosβ − sin β
sin β cosβ

)

Phasenverzögerer um Phasendifferenz ∆Φ M∆Φ =
(

eiΦx 0
0 eiΦy

)
λ
2 -Platte mit schneller x-Achse M

(x)
λ/2 =

(
1 0
0 −1

)
λ
2 -Platte mit schneller y-Achse M

(y)
λ/2 =

(
−1 0

0 1

)
λ
4 -Platte mit schneller x-Achse M

(x)
λ/4 =

(
1 0
0 i

)
λ
4 -Platte mit schneller y-Achse M

(y)
λ/4 =

(
i 0
0 1

)
λ
8 -Platte mit schneller x-Achse M

(x)
λ/8 =

(
1 0
0 ei π

4

)
λ
8 -Platte mit schneller y-Achse M

(y)
λ/8 =

(
ei π

4 0
0 1

)
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10 Paradoxien im Teilchenbild
Man spricht im Zusammenhang mit quantenphysikalischen Phänomenen gelegentlich von
sog. Paradoxien, wenn sich diese Phänomene mit den klassischen Vorstellungen von Teilchen
bzw. Körpern nicht erklären lassen.

So hat beispielsweise ein quantenphysikalisches Teilchen wie das Elektron (fast) nichts
gemein mit einer Billardkugel, außer dass Elektronen ein Bestandteil der Billardkugel sind.
Während man (makroskopischen) Körpern auf der makroskopischen Skala ein im Rahmen der
Messgenauigkeit „exaktes“ Volumen und einen im Rahmen der Messgenauigkeit „exakten“
Aufenthaltsort zubilligen kann, besitzen quantenphysikalische Teilchen keine fest umrissene
Gestalt bzw. keine exakten räumlichen Grenzen und demzufolge auch kein festes Volumen
(siehe Heisenberg’sche Impuls-Ortsunschärfe und Energie-Zeitunschärfe). Allgemein kann
man deshalb in der Realität keine Aussage über den jeweiligen exakten Aufenthaltsort eines
quantenphysikalischen Teilchens treffen.

Man stößt also zwangsläufig auf Widersprüche bei dem Versuch, quantenphysikalische Phä-
nomene im Teilchenbild auf klassische Weise zu erklären. Wir diskutieren diese Problematik
am Beispiel zweier Phänomene.

Reflexionsstrahlteiler

Betrachten wir einen Reflexionsstrahlteiler (halbdurchlässigen Spiegel), der die Intensität des
einfallenden Lichts bei der Reflexion/Transmission halbiert. Im Wellenbild ist die Beschrei-
bung dieses Phänomens unproblematisch, nicht jedoch im Teilchenbild. Es stellt sich hier die
Frage, was mit dem einzelnen Photon (Wellenpaket) der Energie E = h · ν geschieht, wenn es
auf den Strahlteiler trifft. Zu einer Teilung in ein reflektiertes und ein transmittiertes Photon
mit jeweils der halben Energie 1

2E = h · 1
2ν kommt es nicht, denn die Lichtfrequenz ν bleibt

bei der Strahlteilung erhalten. Die Photonen sind unteilbar. Tatsächlich kann man messen,
das jedes einzelne Photon mit einer Wahrscheinlichkeit von in unserem Fall 50 % reflektiert
oder transmittiert wird. Das Ergebnis (Reflexion oder Transmission) im Einzelfall ist dabei
nicht vorhersehbar.

Das bedeutet folgendes: Im klassischen Sinne sollte es möglich sein, den Vorgang der
Strahlteilung so zu beschreiben, dass er bei jeder Messung zumindest im Idealfall in der
gleichen Weise abläuft. Das ist hier im Teilchenbild jedoch nicht möglich, was zu dem Schluss
führt, dass das Ergebnis nicht unbeeinflusst von der Messung eintritt sondern durch die
Messung herbeigeführt bzw. realisiert wird.

Interferenz am Doppelspalt

Die Intensitätsverteilung im Interferenzmuster beim Doppelspalt zeigt deutliche erste Minima
neben dem Hauptmaximum, was sich mit dem Wellencharakter des Lichts problemlos erklären
lässt. Allerdings gilt dies auch für quantenphysikalische Teilchen mit einer Ruhemasse. Wir
betrachten deshalb im Folgenden die Interferenz von Elektronen am Doppelspalt. Es handelt
sich hierbei um ein ortsabhängiges quantenphysikalisches Phänomen.

Im Teilchenbild würde man zunächst intuitiv stets die Überlagerung der Elektro-
nentrefferbilder der beiden Einzelspalte auf einem Bildschirm erwarten, wobei es jedem
einzelnen Elektron, wenn es einen Spalt passiert, „egal“ sein sollte, ob der andere Spalt geöff-
net ist oder nicht. Besitzt ein Elektron, das den Spalt 1 passiert hat, die Wellenfunktion ψ1(x)
mit der zugehörigen Wahrscheinlichkeitsdichte w1(x) = |ψ1(x)|2 und ein Elektron, das den
Spalt 2 passiert hat, die Wellenfunktion ψ2(x) mit der zugehörigen Wahrscheinlichkeitsdichte
w2(x) = |ψ2(x)|2, dann entspräche die Überlagerung bzw. die Summe

|ψ1(x)|2 + |ψ2(x)|2 = w̃(x) (70)
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der beiden Wahrscheinlichkeitsdichten w1(x) und w2(x) dem zu erwartenden Trefferbild.
Dieses Bild besitzt allerdings keine ersten Minima und entsteht nur dann, wenn die Elektronen
an einem oder an beiden Spalten detektiert werden. (70) beschreibt also nicht die Interferenz
der Elektronen am Doppelspalt.

Sind beide Spalte geöffnet und werden die Elektronen beim Passieren der Spalte nicht
beobachtet bzw. detektiert, geht jedes Elektron quasi gleichzeitig durch beide Spalte und
bildet danach einen

Überlagerungszustand ψ(x) = ψ1(x) + ψ2(x) (71)

aus den beiden Wellenfunktionen ψ1(x) von Spalt 1 und ψ2(x) von Spalt 2 .

Unbeobachtet lässt sich demzufolge den Elektronen bezüglich der Passage durch
die Spalte kein bestimmter Ort zuordnen.

Das Doppelspalt-Interferenzmuster ergibt sich damit schließlich aus der Wahrscheinlichkeits-
dichte

w(x) = |ψ1(x) + ψ2(x)|2 = |ψ1(x)|2 + |ψ2(x)|2 + ψ1(x)ψ∗
2(x) + ψ∗

1(x)ψ2(x)︸ ︷︷ ︸
Interferenzterm

des Überlagerungszustands (71).
Dem Elektron an dem einen Spalt ist es also nicht egal, ob der andere Spalt ge-

öffnet oder geschlossen ist. Und es ist den Elektronen auch nicht egal, ob sie beob-
achtet bzw. detektiert werden oder nicht, denn die Detektion (Beobachtung, Messung)
reduziert die Überlagerungswellenfunktion bzw. den Zustand ψ(x) der Elektronen auf
die Wellenfunktionen bzw. Zustände ψ1(x) und ψ2(x), was den Kollaps des Überlage-
rungszustands (71) bedeutet und das Verschwinden des Interferenzterms und damit des
Interferenzmusters zur Folge hat. Es resultiert nach dem Kollaps des Überlagerungszustands
das Überlagerungsbild entsprechend |ψ1(x)|2 + |ψ2(x)|2 aus den Elektronentrefferbildern
jedes der beiden Einzelspalte.

Dieser Sachverhalt führt zu einer grundlegenden Annahme in der Quantenphysik bzw.
quantenphysikalischen Theorie:

Bereits einzelne quantenphysikalische Teilchen (Elementarteilchen, Photonen,
Atome usw.) gehorchen dem Superpositionsprinzip und können sich demzufolge
in einem Überlagerungszustand verschiedener quantenphysikalischer Zustände
befinden.
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11 Grundlegendes zur Wellenoptik

Quellen und weiterführende Literatur

• Wolfgang Demtröder, Springer-Lehrbuch Experimentalphysik 2, Elektrizität und Optik, Springer-Verlag,
Berlin, Heidelberg, New York, 3. Auflage, 2004.

• Eugene Hecht, Optik, Oldenbourg-Verlag, München, 4. Auflage, 2005.
• Rudolf Gross, WMI – Lecture Notes – Kapitel 5, Beugung und Interferenz,

https://www.wmi.badw.de/teaching/Lecturenotes/Physik3/Gross_Physik_III_Kap_5.pdf
• Falko Jahn, Masterarbeit,

https://monami.hs-mittweida.de/frontdoor/deliver/index/docld/2219/file/
Masterarbeit_Falko_Jahn_Bibliotheksexemplar.pdf

11.1 Der Begriff „Wellenoptik“

Die geometrische Optik (Strahlenoptik) beschäftigt sich im Wesentlichen mit der Refraktion
(Brechung) und der Reflektion von Licht auf der Grundlage eines Minimalprinzips, dem
Fermat’schen Prinzip :

Bei Reflektion bzw. Brechung laufen die Lichtstrahlen von der Quelle zum
Empfänger so, dass die Lichtlaufzeit minimal ist.

In der Wellenoptik ist die Wellennatur des Lichtes dominierend. Dabei wird Licht als ein
Feld elektromagnetischer Wellen (elektromagnetisches Wellenfeld) betrachtet. Licht setzt
sich also zusammen aus einem Magnetfeld B⃗(r⃗, t) und einem elektrischen Feld E⃗(r⃗, t) . Weil
das elektrische Feld effektiver auf elektrische Ladungen wirkt als das Magnetfeld, bezeichnet
man E⃗(r⃗, t) auch als optisches Feld. Die Wellenoptik beschäftigt sich im Wesentlichen
mit Diffraktion (Beugung) und Interferenz (Überlagerung, Superposition) von Licht auf der
Grundlage des Fresnel-Huygens-Prinzips1 :

Jeder Punkt einer Wellenfront (der Primärwelle) ist Quelle sekundärer Elementar-
wellen mit der gleichen Frequenz wie die der Primärwelle. In jedem nachfolgenden
Punkt ergibt sich die Amplitude des optischen Feldes durch die Interferenz aller
dieser sekundären Elementarwellen.

Weil Beugung und Interferenz allgemein vergesellschaftet auftreten, ist es um so wichtiger,
sie begrifflich voneinander klar zu trennen:

Interferenz tritt ein bei der Überlagerung von mindestens zwei notwendigerweise
kohärenten Teilwellen (d. h. ursprünglich voneinander getrennten kohärenten
Wellen).
Beugung tritt ein bei der räumlichen Begrenzung von Wellenfronten (z. B. an
einer Kante oder durch eine Blende). Von den Rändern der Begrenzungen bzw.
Hindernissen werden zur einlaufenden Primärwelle phasenkohärente Teilwellen
(Sekundärwellen) in alle möglichen Richtungen ausgesandt. Diese Teilwellen
interferieren dann miteinander.

1Das (ursprüngliche) Huygens’sche Prinzip besagt, dass jeder Punkt einer primären Wellenfront Ausgangs-
punkt kugelförmiger sekundärer Elementarwellen ist, die in der Folge eine Wellenfront (Einhüllende) bilden.
Damit allein lässt sich das frequenzabhängig-unterschiedliche Verhalten bzw. die Interferenz der Wellenfronten
leider nicht ausreichend erklären.
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Abb. 14 Fraunhoferbeugung. Die Punktquelle Q liegt im vorderen Brennpunkt der Sammellinse L1, die
deshalb die von Q ausgehenden Kugelwellen in ebene Wellen transformiert (Kollimator). Die Abbildungs-
ebene σ liegt in der hinteren Brennebene der Sammellinse L2, sodass die einfallenden ebenen Wellenzüge
auf σ konvergieren, in der Abbildung beispielsweise in P für einen bestimmten Wellenzug. Deshalb entsteht
das Interferenzmuster, beispielsweise ein Streifenmuster bei der Beugung am Einfachspalt, in praktikabler
Entfernung auf σ und nicht erst nahezu im Unendlichen. (Abbildung nach E. Hecht, Optik, 4. Auflage,
Oldenbourg Verlag, München, Wien, 2005, Seite 723)

Von einer Punktquelle Q gehe eine Kugelwelle aus. Diese treffe auf einen undurchsichtigen,
ebenen Schirm Σ mit einer Öffnung (Aperturblende) im Abstand QΣ . Der durch die Öffnung
hindurchtretende (auslaufende) Anteil der Kugelwelle breitet sich dann hinter der Öffnung
aus und treffe dann schließlich auf die Beobachtungsebene σ . Die Ebenen Σ und σ sollen
parallel zueinander verlaufen. Der Abstand zwischen der Mitte der Öffnung auf Σ und
einem Beobachtungspunkt P auf σ sei ΣP . Das Licht wird beim Passieren der Öffnung
gebeugt. Abhängig von den Abständen QΣ und ΣP können wir jetzt zwei Arten der
Beugung unterscheiden. Wenn Q und P sehr weit von Σ entfernt sind, dann sind die auf
die Öffnung einlaufende Welle und die von der Öffnung auslaufende Welle als nahezu eben
anzusehen, sodass die Weglängenunterschiede in Richtung P lineare Funktionen von den
Öffnungsvariablen sind. Wir sprechen dann von Fraunhoferbeugung oder Fernfeldbeugung
(Linearität). Sind Q oder/und P jedoch so nahe bei Σ , dass ein- oder/und auslaufende
Welle nicht mehr als eben betrachtet werden können und die Weglängenunterschiede nicht
mehr linear von den Öffungsvariablen abhängen, so spricht man von Fresnelbeugung
oder Nahfeldbeugung (Nichtlinearität). Als Faustregel für den Fraunhofer-Grenzfall beim
Übergang von der Fresnel- zur Fraunhoferbeugung gilt

Fraunhoferbeugung ⇔ R >
a2

λ
.

Dabei ist R der kleinere der beiden Abstände QΣ und ΣP , a ist die größte Ausdehnung
der Öffnung und λ die Wellenlänge des Lichts. Die Fraunhoferbeugung kann man als den
„einfach“ herzuleitenden Spezialfall der Fresnelbeugung betrachten. In der Abbildung 14
wird dargestellt, wie sich die Fraunhoferbeugung mit Hilfe von Sammellinsen platzsparend
realisieren lässt.
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11.2 Fraunhoferbeugung

11.2.1 Elementare Herleitung im Reellen
Kurzdarstellung in Anlehnung an
Gerthsen, Physik, Springer-Verlag, 20. Auflage, 1999, Seite 517 bis Seite 522 und
Paul A. Tipler, Physik, Spektrum-Verlag, 1. deutsche Auflage, 2000, Seite 1120 bis Seite 1131.

Wir betrachten in diesem Abschnitt der Einfachheit halber nur den Fall, dass die Fronten
einer ebenen Lichtwelle komplanar auf einen ebenen Schirm treffen, der lichtdurchlässige,
schmale, gerade, parallel verlaufende Spalten besitzt (Einfachspalt, Doppelspalt, Strichgitter).
Somit haben alle Elementarwellen in der Ebene der Spalten die gleiche Phase Φ.

a) Vorläufige Amplitudenformel

Auf der Grundlage von Abbildung 15 nehmen wir an, dass die Breite a der Spalten so klein
ist, dass diese Spalten Reihen von kohärenten Punktquellen mit dem Reihenabstand g
darstellen. So erhalten wir ein Strichgitter mit extrem schmalen Spalten (Strichen).

Abb. 15 Strichgitter und Schirm in möglichst großem Abstand ℓ zur Darstellung des Interferenzmusters.
Gitterkonstante g, Strichzahl N , Spaltbreite a, Spalt-Schirm-Abstand ℓ mit ℓ≫ g, Winkel φ zwischen
der Wellenfrontnormalen und der Spaltnormalen, Gangunterschied ∆s.
Im Fall ℓ→∞ verlaufen die von den beiden dargestellten Punktquellen ausgehenden ebenen Wellenzüge
parallel zueinander und in Richtung zum Punkt y des Interferenzmusters auf dem Schirm.

Die Phasendifferenz δ zwischen den Wellenzügen benachbarter Spalten ergibt sich im Bogen-
maß [rad] aus dem Laufwegunterschied oder kurz Gangunterschied ∆s wie folgt:

δ

2π = ∆s
λ

= g · sinφ
λ

⇔ Phasendifferenz δ = 2π
λ
· g · sinφ = k ·∆s . (72)
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Abb. 16 Der korrekte Gangunterschied ∆s = s2 − s1 .

Anhand der Abbildung 16 zeigen wir, dass der in Abbildung 15 dargestellte Gangunterschied

∆s = g · sinφ für ℓ ≫ g

eine gute Näherung ist und an den Grenzen φ = 0 und φ = π
2 mit g sinφ übereinstimmt:

c = g

2 , a = ℓ

cosφ , b = c sinφ , h = c cosφ ,

∆s = s2 − s1 =
√

(a+ b)2 + h2 −
√

(a− b)2 + h2

=

√(
ℓ

cosφ + c sinφ
)2

+ c2 cos2 φ −

√(
ℓ

cosφ − c sinφ
)2

+ c2 cos2 φ ⇒

lim
φ→0

∆s =
√
ℓ2 + c2 −

√
ℓ2 + c2 = 0 = g sin(0) , □

lim
φ→ π

2
∆s = lim

φ→ π
2

√( ℓ

cosφ + c

)2

−

√(
ℓ

cosφ − c

)2


= lim
φ→ π

2

[(
ℓ

cosφ + c

)
−
(

ℓ

cosφ − c

) ]
= 2c = g = g sin

(
π
2
)
. □

Hauptmaxima bei konstruktiver Interferenz:

∆s = g · sinφ != m · λ ,

δ = 2πg
λ

sinφ != m · 2π, m = 0, 1, 2, 3, . . . (73)

⇒ sinφ = m · λ
g
, sinφ ∼ λ , sinφ ∼ 1

g
.

Für konstruktive Interferenz gilt: Je größer λ ,
Je kleiner g ,

}
desto größer istφ.

Minima bei destruktiver Interferenz:

∆s = g · sinφ !=
(
m+ 1

2

)
λ ,

δ = 2πg
λ

sinφ != (2m+ 1)π, m = 0, 1, 2, 3, . . . .
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Abb. 17 Überlagerung vieler gleichstarker Wellen mit der Phasenver-
schiebung δ zwischen je zweien, z. B. der Teilwellen aus den Spalten eines
Beugungsgitters. Darstellung dieser Überlagerung durch ein Zeigerdia-
gramm.
Vervollständigt man das Diagramm durch Aneinanderfügen weiterer Zeiger
(Vektoren), so erhält man einen kreisförmigen Polygonzug mit dem Radius
r.
(Abbildung und Legende nach Gerthsen, Physik, Springer-Verlag, 20. Auf-
lage, 1999, Seite 518)

Von jedem der N Gitterspalten (Striche) geht eine Reihe von Kugelwellen aus, d. h., jeder
Spalt liefert ein Welle mit der Amplitude A′. Bei φ = 0 ⇒ δ = 0 gilt infolge konstruktiver
Interferenz aller A′

A(φ=0) = A0 = N ·A′ = Amax .

Bei φ ̸= 0 ist wegen der Phasendifferenz δ = 2πg
λ sinφ

die Phasendifferenz ∆Φ zwischen dem ersten und dem letzten Spalt des Gitters ∆Φ = (N−1)·δ
und für eine große Gitterstrichzahl N näherungsweise

∆Φ = N · δ = N · 2πg
λ

sinφ .

Entsprechend dem Zeigerdiagramm erhält man daraus die von φ abhängige Amplitude Aφ

(Betrag der Vektorsumme bzw. Länge der Sehne des Polygonzuges für einen bestimmten
Winkel φ) wie folgt:

sin
(1

2 ∆Φ
)

= sin
(1

2 Nδ
)

=
Aφ

2
r

= Aφ

2r ⇒ Aφ = 2r · sin Nδ2 ⇔ r = Aφ

2 sin Nδ
2
.

Für N = 1 erhält man r = A′

2 sin δ
2
. Dieses in Aφ = 2r · sin Nδ

2 eingesetzt ergibt

Aφ = 2
(

A′

2 sin δ
2

)
sin Nδ2 = A′ sin Nδ

2
sin δ

2
.

Substitution von δ durch 2πg
λ sinφ liefert schließlich die

vorläufige Amplitudenformel für die Interferenz am Strichgitter:

Aφ = A′
sin
(

Nπg
λ sinφ

)
sin
(πg

λ sinφ
) . (74)

• Je kleiner g ist, desto breiter wird das Spektrum gespreizt, denn

∆s = g · sinφ ⇒ sinφ = ∆s · 1
g
⇒ sinφ ∝ 1

g
. (75)

• Aus sinφ ∝ λ folgt, dass Licht mit großer Wellenlänge (z. B. rotes Licht) stärker
gebeugt wird als Licht mit kleiner Wellenlänge (z. B. blaues Licht).

• Ein Gitter macht um so schärfere Spektrallinien, je mehr Striche es hat.

• Zwischen 2 Hauptmaxima liegen stets N − 1 Minima und N − 2 Nebenmaxima.
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b) Amplitudenformel für die Beugung und Interferenz am Einfachspalt

Die Herleitung der Amplitudenformel für die Beugung und Interferenz am Einfachspalt erfolgt
auf der Basis der vorläufigen Amplitudenformel (74). Diese wurde mit Hilfe des Konzepts
der Vektoraddition bzw. des Zeigerdiagramms entwickelt, wobei die Spaltbreite des Strich-
gitters als extrem klein und somit der einzelne Gitterspalt als eine Reihe von Punktquellen
angenommen wurde. A′ war dabei die aus nur einer dieser Reihen von Punktquellen (aus
nur einem Strich) resultierende Amplitude.

Den Einfachspalt erhält man jetzt, indem beim Strichgitter solange die Gitterkonstante
g verkleinert und gleichzeitig die Strichzahl N erhöht wird, bis schließlich ein Einfachspalt
mit der endlichen Spaltbreite a resultiert. Wir können also sinngemäß oder besser gesagt
symbolisch schreiben:

lim
g→0

N→∞

∑
Gitterspalten ≈ N · g = a ⇔ g = a

N
.

Aus dem Strichgitter ist jetzt ein Einfachspalt geworden, der gleichsam aus nahezu unendlich
vielen, nahezu unendlich schmalen Gitterstrichen besteht, die insgesamt die Einfachspaltbreite
a ergeben. Damit wird aber auch die Phasendifferenz δ = 2πg

λ sinφ zwischen den Wellenzügen
aus benachbarten Gitterstrichen verschwindend klein. Für kleine δ können wir aber

sin δ2 = δ

2

schreiben und erhalten so mit (72)

sin δ2 = sin
(πg
λ

sinφ
)

= πg

λ
sinφ . (76)

Berücksichtigen wir (76) in der vorläufigen Amplitudenformel (74) und setzen wir für g dort
außerdem a

N ein, so resultiert

Aφ = A′
sin
(

Nπ· a
N

λ sinφ
)

π· a
N

λ sinφ
= A′ sin

(
πa
λ sinφ

)
πa

N ·λ sinφ = NA′ sin
(

π
λ sinφ

)
πa
λ sinφ

und daraus mit NA′ = Amax = A0 schließlich die Amplitudenformel für die Beugung und
Interferenz am Einfachspalt:

Aφ = A0
sin
(

πa
λ sinφ

)
πa
λ sinφ . (77)

Aφ ist der Betrag der Vektorsumme, also die Länge der Sehne des Polygonzuges.
A0 ist die resultierende Amplitude für die Ausbreitungsrichtung mit φ = 0, also das
Maximum von Aφ, denn nach der Regel von de l’Hospital ist limx→0

sin x
x = 1 .

• Durch das Anwachsen des Sinus im Nenner nehmen die Maxima bei der Beugung am
Einfachspalt zur Seite hin sehr schnell an Höhe ab.

• Mit (75) und wegen g → 0 sowie N → ∞ existiert nur ein zentrales (Haupt-)
Maximum. Alle anderen Hauptmaxima wandern unendlich weit seitwärts, sodass nur
unendlich viele Nebenmaxima übrigbleiben.
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• Die Phasendifferenz (zwischen der Phase an dem einen Spaltenrand und der Phase am
anderen Spaltenrand) für einen bestimmten Winkel φ beim Einfachspalt ist

∆Φ = 2πa
λ

sinφ = 2π sinφ
λ

a (78)

Es gilt also ∆Φ ∼ a, d. h., dass eine bestimmte Phasendifferenz ∆Φ mit abnehmender
Spaltbreite a erst bei einem größeren Winkel φ erreicht wird. Das Beugungsspektrum
wird also bei abnehmender Spaltbreite gespreizt und das zentrale Maximum wird dabei
gleichzeitig breiter und niedriger.

c) Amplitudenformel für die Beugung und Interferenz am Strichgitter

Die endgültige Formel für die Beugung und Interferenz am Strichgitter erhält man, wenn
in (74) für die Amplitude A′ des einzelnen Gitterspalts die Amplitudenformel (77) des
Einfachspalts einsetzt, denn

A′ = A0
sin
(

πa
λ sinφ

)
πa
λ sinφ .

Dadurch wird in der Amplitude Aφ jeder einzelne Gitterspalt als Einzelspalt mit der endlichen
Spaltbreite a berücksichtigt. Insgesamt ist dann die endgültige Amplitudenformel für das
Strichgitter

Aφ = A0
sin
(

πa
λ sinφ

)
πa
λ sinφ ·

sin
(

Nπg
λ sinφ

)
sin
(πg

λ sinφ
) . (79)

Wie man sieht, resultiert für N = 1 die Amplitudenformel für den Einfachspalt, für N = 2
die Amplitudenformel für den Doppelspalt usw.

d) Intensitätsformel für die Beugung und Interferenz am Strichgitter

Die Intensität einer ebenen Lichtwelle ist proportional zum Quadrat ihrer (Feldstärken-)
Amplitude:

A2
φ ∝ Iφ , A2

0 = N2 ·A′2 ∝ I0 ⇒ I0 ∝ N2 .

Quadrieren von (79) liefert folglich die Intensitätsformel für die Beugung und Interferenz am
Strichgitter:

Iφ = I0
sin2 (πa

λ sinφ
)(

πa
λ sinφ

)2 ·
sin2

(
Nπg

λ sinφ
)

sin2 (πg
λ sinφ

) . (80)

Bei der Anwendung dieser Intensitätsformel kann man den Doppelspalt als ein Strichgitter
mit N = 2 und den Einfachspalt als ein Strichgitter mit N = 1 betrachten.

e) Intensitätsformel für die Beugung und Interferenz am Einfachspalt

Somit ist die Intensitätsformel für die Beugung und Interferenz am Einfachspalt:

Iφ = I0
sin2 (πa

λ sinφ
)(

πa
λ sinφ

)2 . (81)

Das zentrale Maximum wird beim Einfachspalt auch Hauptmaximum genannt. Daneben
existieren nur noch Nebenmaxima der Ordnung m = 1, 2, 3, . . . , deren Intensität mit
ansteigender Ordnung stark abnimmt.
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Der Abstand zwischen dem ersten Intensitätsminimum links und dem ersten Intensitätsmini-
mum rechts vom zentralen Maximum kann als Breite des zentralen Maximums angesehen
werden (siehe Abbildung 18).

Abb. 18 Die Breite des zentralen Maximums bei der Beugung am Einfachspalt. Weil die Intensität der
Nebenmaxima sehr stark abfällt, sind diese zur Verdeutlichung um das 10-fache überhöht. Der Vollständig-
keit halber wird der Amplitudenverlauf des E-Feldes längs der y-Achse der Intensität gegenübergestellt.
(Abbildung nach dem Springer-Lehrbuch Langkau, Scobel, Lindström, Physik kompakt 2, Elektrodynamik
und Elektromagnetische Wellen, Springer-Verlag, Berlin, Heidelberg, New York, 2. Auflage, 2002, Seite
250)

Dem Zeigerdiagramm entsprechend liegen der erste Nulldurchgang der Amplitude links und
der erste Nulldurchgang der Amplitude rechts vom zentralen Maximum bei demjenigen
Winkel φ, der im Zeigerdiagramm einen einfachen geschlossenen Vektorkreis liefert, d. h.
gemäß (78) bei

∆Φ = 2π · a · sinφ
λ

!= 2π .

Bildet das Zeigerdiagramm einen Vollkreis, so ist die Vektorsumme nämlich gleich null, d. h.
die Teilamplituden löschen sich in ihrer Gesamtheit aus (destruktive Interferenz).2 Der zum
ersten Nulldurchgang der Amplitude gehörende Winkel φ ist somit

⇔ sinφ = λ

a
⇒ φ = arcsin λ

a
.

Damit beträgt die Breite des zentralen Maximums auf dem Schirm (s. Abb. 18)

2 · ℓ · tan
(

arcsin λ
a

)
.

Minima und Maxima beim Einfachspalt:
Hauptmaximum bei φ = 0 .

Nebenmaxima bei sinφm =
(
m+ 1

2

)
λ

a
, m = 1, 2, 3, . . . .

Minima bei sinφm = m
λ

a
, m = 1, 2, 3, . . . .

2Der erste Nulldurchgang der Amplitude zu beiden Seiten des zentralen Maximums bildet die ersten
Intensitätsminima und bestimmt die Breite des zentralen Maximums.
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Minima und Maxima beim Strichgitter:

Maxima bei sinφm = m
λ

g
, m = 0, 1, 2, 3, . . . .

Minima bei sinφm = m
λ

N · g
, m = 1, 2, 3, . . . .

f) Spektrales Auflösungsvermögen des Strichgitters

Die Herleitung erfolgt nach dem Lehrbuch von Gerthsen, Seite 522, und auf der Grundlage
von Formel (80) sowie speziell auf der Grundlage der vorläufigen Amplitudenformel (74)

Aφ = A′ ·
sin
(

Nπg
λ sinφ

)
sin
(πg

λ sinφ
) ,

denn insbesondere das breite zentrale Maximum von A′ überlagert den Quotienten in (74)
nur und ist für das Auflösungsvermögen des Strichgitters nicht relevant.

Der Quotient auf der rechten Seite von (74) ist verantwortlich für die Anordnung der
Hauptmaxima und Minima im Gitterspektrum:

• Die Maxima liegen dort, wo sowohl Zähler also auch Nenner verschwinden bzw. gegen
Null gehen:

δ = 2πg
λ
· sinφm

!= m · 2π ⇔ sinφm = mλ

g
, m = 0, 1, 2, 3, . . .

Nenner: sin
(πg

λ sinφm

)
= sin (mπ) = 0

Zähler: sin (N ·mπ) = 0

Maximum m-ter Ordnung: φm ≈
mλ

g
. (82)

• Die Minima liegen dort, wo nur der Zähler verschwindet.

Zähler: sin
(

πNg
λ sinφ

)
!= 0 bei sinφ ̸= 0 bzw. φ ̸= 0 , d. h. wenn

N ·∆s = N · g · sinφm = λ ⇒ sinφm = m · λ

N · g
, m = 1, 2, 3, . . . .

Beim ersten Minimum bilden die Vektoren der N Gitterquellen einen einfachen ge-
schlossenen Kreis und löschen sich somit aus. Es gilt dann

N · δ = N · 2πg
λ

sinφ = 2π .

∆ (sinφ) = (m+ 1) λ
N ·g −m

λ
N ·g = λ

N ·g liefert somit den Abstandswinkel

∆φ ≈ λ

N · g

des ersten Minimums von einem Hauptmaximum.

95



• Die Maxima von Licht mit der Wellenlänge λ+ ∆λ besitzen gemäß (82) die Winkel

φm ≈
m (λ+ ∆λ)

g
= mλ

g
+ m ·∆λ

g

und liegen damit gegenüber Licht mit der Wellenlänge λ um den Winkel m·∆λ
g versetzt.

• Die Maxima (Spektrallinien) des Lichts mit λ und des Lichtes mit (λ+ ∆λ) lassen sich
trennen, wenn das Maximum (der Ordnung m) des Lichts mit (λ+ ∆λ) in das erste
Minimum des Lichts mit λ fällt oder sogar vom Maximum (der Ordnung m) des Lichts
mit λ noch weiter entfernt ist, also wenn gilt

m ·∆λ
g

≥ ∆φ ≈ λ

N · g
⇔

spektrales Auflösungsvermögen m ·N ≥ λ

∆λ .

• Das Auflösungsvermögen λ
∆λ eines Gitters wächst proportional mit der Anzahl der

Striche (Strichzahl N) des Gitters und der Ordnung m des verwendeten Maximums.
Das Auflösungsvermögen eines Gitters hängt nicht von der Gitterkonstante g ab, auch
wenn gilt:
Je kleiner g, desto weiter wird das Spektrum gespreizt.

• λ
∆λ darf nicht größer als das Gitterauflösungsvermögen m · N werden, damit das
Spektrum des Lichtes mit der Wellenlänge λ + ∆λ noch aufgelöst werden kann. Je
größer also das Auflösungsvermögen m ·N ist, desto kleiner darf ∆λ sein, d. h., desto
besser lassen sich kleine Frequenzunterschiede des Lichtes spektral auflösen.
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11.3 Fresnel’sche Zonen

Quellen
• Wolfgang Demtröder, Springer-Lehrbuch Experimentalphysik 2, Elektrizität und Optik, Springer- Verlag,

Berlin, Heidelberg, New York, 3. Auflage, 2004, Abschnitt 10.6.1 Fresnelsche Zonen, Seite 322 bis Seite 325.
• Eugene Hecht, Optik, Oldenbourg-Verlag, München, 4. Auflage, 2005, Abschnitt 10.3.1 Die freie Ausbreitung

einer Kugelwelle, Seite 779 bis Seite 785.

Abb. 19 Fresnel’sche Zonen. Dargestellt sind nur die ersten 8 Zonen. TE steht für Tangentialebene an
den Punkt Q der dargestellten Kugelwellenfront.

• Die von der Punktquelle O ausgehende und sich frei im Raum ausbreitende Kugelwelle,
die Primärwelle, sei

E = ER · ei(kR−ωt) = A

R
· ei(kR−ωt) . (83)

Die Amplitude ER = A
R ist also umgekehrt proportional zum Radius R der betrachteten

Kugelwelle. Wie man sieht, kann A nicht die Feldstärkenamplitude sein, weil A nicht
die Maßeinheit (Dimension) von E besitzt. Weiterhin besitzt die Funktion ER(R) bei
R = 0 eine Singularität.

• Nach dem Huygens’schen Prinzip sind alle Punkte Q der Kugelfläche mit Radius R
um O Ausgangspunkte neuer Kugelwellen, den Sekundärwellen.

• Mit diesem Ansatz berechnen wir das E-Feld in einem Punkt P , der längs OP den
Abstand r0 von der betrachteten Kugelfläche besitzt (siehe Abbildung 19).

• Die Abstände zwischen den Punkten Q auf der Kugelfläche und dem Punkt P bezeichnen
wir mit r .

• Die Strecke OP besitzt die Länge

R+ r0 ⇒ r(α = 0) = r0 .

• Der Kreis, der von einem bestimmten r = r(α) auf der Kugelfläche gebildet wird,
besitzt den Radius

ϱ = R · sinα .
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• Die Fresnel’sche Zonen bzw. Halbperiodenzonen auf der Kugeloberfläche mit dem
Radius R erhalten wir – abhängig von r – wie folgt:

r0 = r0 + 0 · λ
2 = r0

r1 = r0 + 1 · λ
2

r2 = r0 + 2 · λ
2

r3 = r0 + 3 · λ
2...


⇒ rm = r0 +m · λ2 , m = 1, 2, 3, . . . .

Die 1. Zone erstreckt sich demnach von r0 bis r1 = r0 + λ
2 und die

m-te Fresnel’sche Zone

 von rm−1 = r0 + (m− 1) · λ
2

bis rm = r0 +m · λ
2 .

• Die Anwendung des Kosinussatzes

Abb. 20 Kosinussatz: a2 = b2 + c2 − 2bc cosα .

auf das Dreieck OQP liefert

r2 = R2 + (R+ r0)2 − 2R(R+ r0) cosα

⇒ d
dα r

2 = 2r dr
dα = 2R(R+ r0) sinα ⇔

R sinα dα = 1
R+ r0

r dr . (84)

• Wir betrachten ein ring- bzw. kreisförmiges und konzentrisch um OP gelegenes Flä-
chenelement dS innerhalb einer Fresnel’schen Zone. Alle Punktquellen in dS emittieren
kohärent und phasengleich mit der zugehörigen Primärwelle. Die dabei entstehenden
sekundären Elementarwellen (Sekundärwellen) kommen demzufolge nach Zurücklegen
des Weges r zum Zeitpunkt t mit der Phase

[
k·(R+ r)− ωt

]
phasengleich im Punkt P

an. Gemäß (83) ist ER = A/R die Amplitude der Primärwelle auf dS.
E′ sei der Feldstärkebeitrag von ER pro Flächeneinheit auf dS, also sinngemäß dER/dS,
für die Sekundärwellen. Offensichtlich ist der Beitrag von ER zur Feldstärke der
Sekundärwellen in P proportional zu E′ mit der Proportionalitätskonstante q :

E′ ∝ ER ⇒ E′ = q · ER . (85)

• Weiterhin ist der Feldstärkebeitrag durch die Sekundärwellen in P abhängig vom Winkel
ϑ (siehe Abbildung 19), d. h. abhängig von der „Gerichtetheit“ der sekundären Quellen
auf der primären Kugelwellenfront. Diese „Gerichtetheit“ wird in diesem speziellen
Zusammenhang beschrieben durch den3

3Auf den ersten Blick würde man meinen, dass der Feldstärkebeitrag in P durch die Sekundärwellen
proportional zu einer Richtungsfunktion f(ϑ) = cosϑ sei, wovon auch Fresnel zunächst in seiner Theorie
ausging. Warum das nicht so ist, wird in der skalaren Beugungstheorie von Kirchhoff deutlich. Auf den
Neigungsfaktor in allgemeiner Form gehen wir im Abschnitt 12.4 gesondert ein.
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Neigungsfaktor K = K(ϑ) = 1
2 (1 + cosϑ) .

Für den Feldstärkebeitrag der Sekundärwellen im Punkt P gilt

E(P ) ∝ K .

Für unsere Kugelwellenfront mit ϑ0 = 0 ⇒ cosϑ0 = 1 bedeutet das (siehe Abbildung
19)

K(ϑ) = 1
2 (1 + cosϑ) ∝ E(P ) . (86)

Und bei ϑ0 = 0 und ϑ = 0 ist dann K = 1 und Q liegt innerhalb der Strecke OP .
Weiterhin bedeutet das, dass antiparallel zu k⃗ laufende Sekundärwellen (bei entspre-
chend rückwärtiger Lage von Q) wegen

ϑ = π ⇒ cosϑ = −1 ⇒ K(ϑ) = 1
2 (1− 1) = 0

keinen Feldstärkebeitrag in P leisten. O liegt dann innerhalb der Strecke QP .

• Mit (85) und (86) machen wir jetzt den folgenden Ansatz:
Das um OP ring- bzw. kreisförmige Flächenelement dS mit dem zugehörigen Abstand
r zum Punkt P liefert zur Feldstärke in P den Beitrag

dE(P ) = C̃ ·K · E
′

r
ei [ k(R+r) − ωt ] dS = C̃ ·K · q · ER

r
ei [ k(R+r) − ωt ] dS

und mit der Zusammenfassung der Konstanten C̃ und q zu C̃ · q = C schließlich

dE(P ) = C ·K · ER
r

ei [ k(R+r) − ωt ] dS . (87)

Der Neigungsfaktor K = 1
2 (1 + cosϑ) bezüglich der primären Kugelwellenfront be-

schreibt die Abhängigkeit der von dS in Richtung P abgestrahlten Amplitude vom
Winkel ϑ. Da K(ϑ) eine nur langsam veränderliche Funktion ist, nehmen wir K über je-
de einzelne Fresnel’sche Zone als konstant an und schreiben Km für den Neigungsfaktor
der m-ten Fresnel’schen Zone.

• Das Flächenelement dS besitzt den Kreisumfang 2π · ϱ = 2π ·R sinα ,
die Breite R · dα und folglich die Fläche

dS = 2πR sinα ·R dα = 2πR ·R sinα dα .

Aus dem Vergleich mit (84) resultiert

dS = 2πR
R+ r0

r dr .

Somit ist dS nur noch von r abhängig.

• Durch Integration über (87) können wir jetzt den Beitrag Em der
m-ten Fresnel’schen Zone zum E-Feld im Punkt P berechnen:

Em =
rm∫

rm−1

dEm =
rm∫

rm−1

C ·Km ·
ER
r

ei [ k(R+r) − ωt ] · 2πR
R+ r0

r dr ,
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Em = C ·KmER
2πR
R+ r0

ei(kR−ωt) ·
rm∫

rm−1

eikr dr ,

Em = C ·KmER
2πR
R+ r0

ei(kR−ωt) · 1
ik ·

[
eikr

]rm

rm−1

,

Zwischenrechnung

Mit

k = 2π
λ
,

rm = r0 +m
λ

2 ,

rm−1 = r0 + (m− 1)λ2 = r0 +m
λ

2 − λ

2 ,

eiπ = e−iπ = −1

ist [
eikr

]rm

rm−1

= eikrm − eikrm−1 = eik(r0+m λ
2 ) − eik(r0+m λ

2 − λ
2 )

= eikr0 · eik λ
2 m − eikr0 · eik λ

2 m · e−ik λ
2 = eikr0 · eik λ

2 m ·
(

1 − e−ik λ
2
)

= eikr0 ·
(
eiπ)m ·

(
1 − e−iπ) ,[

eikr

]rm

rm−1

= eikr0 · (−1)m · 2 .

Em = C ·KmER
2πR
R+ r0

ei(kR−ωt) · 1
ik · e

ikr0 · (−1)m · 2

= −i(−1)m · C ·KmER
2πR
R+ r0

ei [ k(R+r0) − ωt ] · λ
π
,

Em = C · (−1)m+1 i · 2λ ·KmER ·R
R+ r0

ei [ k(R+r0) − ωt ] ,

Em(P ) = C · (−1)m+1 2 · iλ ·Km · ER ·R
R+ r0

ei [ k(R+r0) − ωt ] . (88)

• Die Gesamtfeldstärke im Punkt P ist folglich

E(P ) =
N∑

m=1
Em = |E1| − |E2|+ |E3| − |E4|+ |E5| − · · · ± |EN |

=
(

1
2 |E1|+ 1

2 |E1|
)
−|E2|+

(
1
2 |E3|+ 1

2 |E3|
)
−|E4|+

(
1
2 |E5|+ 1

2 |E5|
)
− · · · ±|EN | . (89)

Dabei haben wir den Vorzeichenwechsel von Em beim Zonenwechsel berücksichtigt.

• Mit Km verändern sich auch die |Em| nur sehr langsam, sodass

|Em| ≈
1
2
(
|Em−1|+ |Em+1|

)
⇔ 1

2 |Em−1| − |Em|+
1
2 |Em+1| ≈ 0 .
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Dem entsprechend können wir (89) umordnen und erhalten

E(P ) = 1
2 |E1|+

(
1
2 |E1| − |E2|+ 1

2 |E3|
)

︸ ︷︷ ︸
≈ 0

+
(

1
2 |E3| − |E4|+ 1

2 |E5|
)

︸ ︷︷ ︸
≈ 0

+ · · ·+ 1
2 |EN | . (90)

Der Beitrag EN der N -ten Zone, d. h. der letzten Zone um ϑ = π, kann wegen KN = 0
vernachlässigt werden. Es verbleibt als Gesamtfeldstärke im Punkt P mit (88) für E1
und mit ER = A/R

E(P ) ≈ 1
2 E1 = 1

2 ·
C · 2 · iλ ·K1 · ER ·R

R+ r0
ei [ k(R+r0) − ωt ] ,

E(P ) ≈ C ·K1 · iλ ·
A

R+ r0
ei [ k(R+r0) − ωt ] . (91)

• Für die Bestimmung von C benutzen wir einerseits, dass für E1 bzw. in der ersten
Zone cos(ϑ ≈ 0) ≈ 1 ⇒ K1 = 1 gilt, und andererseits den Vergleich von (91) mit der
Feldstärke

E(P ) = A

R+ r0
· ei [ k(R+r0) − ωt ] ,

die im Punkt P , d. h. im AbstandR+r0 von O, durch die von O ausgehende Primärwelle4

(83) erzeugt wird:

C ·K1 · iλ ·
A

R+ r0
= C · iλ · A

R+ r0
= A

R+ r0
⇒

C = 1
iλ .

• Berechnung von ϱ:

Mit
c = R+ r0 ,

sinα = ϱ

R
,

R · cosα = R ·
√

1− sin2 α =
√
R2 − ϱ2 ,

z = c − R cosα = c−
√
R2 − ϱ2

erhält man

r2 = ϱ2 + z2 = ϱ2 + c2 +R2 − ϱ2 − 2c
√
R2 − ϱ2 ,

r2 = c2 +R2 − 2c
√
R2 − ϱ2 ⇔√

R2 − ϱ2 = c2 +R2 − r2

2c .

4Der in (91) auftretende Faktor i = ei π
2 kann in der Exponentialfunktion berücksichtigt werden und verändert

diese dann zu ei [ k(R+r0) − ωt + π
2 ]. Das bedeutete eine Phasenverschiebung der Sekundärwellen gegenüber der

Primärwelle um π
2 . Allerdings ist eine Diskussion dieses Problems in diesem Zusammenhang nicht notwendig.
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Quadrieren und Auflösen nach ϱ liefert schließlich

ϱ =

√
4 c2R2 −

(
c2 +R2 − r2

)2

2c .

Dies lässt sich leicht überprüfen. R = 3, r = 4 und c = 5 beispielsweise ergeben ϱ = 2, 4
und sinα = 0, 8 bzw. cosα = 0, 6 sowie R cosα = 1, 8 .

Für sehr große R bzw. für R→∞ geht die Kugelfläche in Abbildung 19 über in eine
Ebene, d. h. die Kugelwellenfront der Primärwelle geht über in eine ebene Wellenfront.
Das führt zu einer wesentlichen Vereinfachung der Berechnung von ϱ (siehe Abbildung
21) :

Abb. 21 Zur Berechnung von ϱ bzw. ϱm für R→
∞ .

ϱ2 = r2 − r2
0 ⇒ ϱ =

√
r2 − r2

0
bzw.

ϱ2
m =

(
r0 +m λ

2
)2 − r2

0 = m2

4 λ2 +mr0 λ ⇒

ϱm =
√
m2

4 λ2 +mr0 λ für R→∞ .

Wie man sieht, hängen Breite und Lage der Fresnel’schen Zonen neben λ in jedem Fall
insbesondere von r0 ab.

• Näherung von ϱm für λ≪ r0 und für kleine m (siehe Abbildung 19) :

ϱm ≈
√
r2

m − r2
0 .

Wir nähern weiter mittels Taylor-Entwicklung des Radikanden bis zur 1. Ordnung an
der Stelle λ = 0 :

r2
m− r2

0 =
(
r0 +m λ

2
)2 − r2

0 = r2
0 +

(
m
2 λ
)2 + r0mλ− r2

0

= m2

4 λ2 + r0mλ ⇒

r2
m− r2

0 ≈
[

m2

2 λ+ r0m

]
λ=0
· λ = mr0 λ ⇒

ϱm ≈
√
m · r0 · λ für r0 ≫ λ . (92)

Mit dem Konzept der Fresnel’schen Zonen lassen sich einige Phänomene erklären, die auf
den ersten Blick merkwürdig erscheinen, weil sie sich durch die (anschauliche) geometrische
Optik nicht beschreiben lassen. Wir zeigen dies im Folgenden an drei Beispielen :

102



1. kreisförmige Blende
Zwischen O und P positionieren wir einen lichtundurchlässigen Schirm mit einem
zentralen kreisförmigen Loch, d. h. einer Blende, im Abstand r0 vor dem Punkt P . Der
Durchmesser D der Blende sei gerade so groß wie die 1. Fresnel’sche Zone, nämlich5

D = 2 · ϱ1 ≈ 2 ·
√
r2

1 − r2
0 = 2 ·

√(
r0 + 1 · λ2

)2
− r2

0 .

Somit erreicht nur das Licht aus der 1. Fresnel’schen Zone den Punkt P . Gemäß (88)
und mit K1 = 1

i λ sowie ER = A
R ist die Feldstärke in P folglich

E(P ) = E1 = 2 · A

R+ r0
ei [ k(R+r0) − ωt ] ,

also doppelt so groß wie ohne Schirm. Und die daraus resultierende Intensität in P ist
viermal so groß wie ohne Schirm.
Ursache dafür ist die fehlende (insbesondere destruktive) Interferenz mit dem Licht
aus den übrigen Fresnel’schen Zonen.

2. kreisförmige Scheibe
Zwischen O und P positionieren wir eine lichtundurchlässige kreisförmige Scheibe im
Abstand r0 vor dem Punkt P . Der Durchmesser D der Scheibe sei gerade so groß wie
die 1. Fresnel’sche Zone, sodass das Licht von der 1. Fresnel’schen Zone ausgeblendet
wird. Wenn wir also E1 = 0 in (90) berücksichtigen, erhalten wir

E(P ) = 0 +
(

0− |E2|+ 1
2 |E3|

)
︸ ︷︷ ︸

≈ 0

+
(

1
2 |E3| − |E4|+ 1

2 |E5|
)

︸ ︷︷ ︸
≈ 0

+ · · · + 1
2 |EN | .

Mit |E1| ≈ |E2| ≈ |E3|, unter Vernachlässigung von |EN | und unter Beachtung, dass
gemäß (88) E2 negativ und E3 positiv ist, resultiert daraus schließlich

E(P ) ≈ −|E2|+ 1
2 |E3|+

(
1
2 |E3| − |E4|+ 1

2 |E5|
)

︸ ︷︷ ︸
≈ 0

+ · · · + 0 = −E1 + 1
2E1 ,

E(P ) ≈ −1
2 E1 .

Obwohl das Licht der 1. Fresnel’schen Zone durch eine Scheibe ausgeblendet wird, ist
die Lichtintensität in P genauso groß wie ohne Scheibe.

3. Fresnel’sche Zonenplatte
Werden die zu einer bestimmten „Bildweite“ r0 und für eine bestimmte Wellenlänge
λ ermittelten geraden oder ungeraden Fresnel’schen Zonen (Kreisringe) auf einer
Glasplatte vollständig oder teilweise lichtundurchlässig gemacht und treffen dann
näherungsweise ebene Wellen (z. B. Sonnenlicht) auf diese Platte, so kommt es dahinter
im Punkt P zu einer Intensitätsverstärkung des Lichts. Diese Fresnel’sche Zonenplatte
wirkt also ähnlich wie eine Sammellinse. Ursache für die Verstärkung ist die konstruktive
Interferenz der hindurchgelassenen und in P gleichphasig ankommenden Wellenanteile
bei gleichzeitiger Verhinderung der destruktiven Interferenz durch die gegenphasigen
Anteile (mit entgegengesetztem Vorzeichen von E).

5Beispielsweise beträgt der Radius ϱ1 der 1. Fresnel’schen Zone für r0 = 20 cm und grünes Licht mit der
Wellenlänge λ = 500 nm = 5, 0 · 10−7 m

ϱ ≈
√
r2 − r2

0 ⇒ ϱm ≈
√

(r0 +m · λ
2 )2 − r2

0 ⇒ ϱ1 ≈
√

(r0 + λ
2 )2 − r2

0 ≈ 0, 32 mm .
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Wenn der Durchmesser D der kreisförmigen Blende, die wie oben beschrieben im Abstand r0
von P positioniert ist, wesentlich größer ist als der Durchmesser der
1. Fresnel’sche Zone, also

D ≫ 2ϱ1 ≈ 2
√
r0 λ ,

tragen viele Fresnel’sche Zonen zum Feld im Punkt P bei und wir sprechen von Fresnel-
Beugung.

Wenn aber r0 so groß wird, dass der Durchmesser D der Blende gleich groß oder kleiner
ist als der Durchmesser der 1. Fresnel’schen Zone, also

D ≤ 2ϱ1 ≈ 2
√
r0 λ ,

trägt nur die 1. Fresnel’sche Zone zum Feld im Punkt P bei und wir sprechen von Fraunhofer-
Beugung.
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12 Zur (skalaren) Fresnel-Kirchhoff’schen Beugungstheorie
Wir stützen uns in diesem Kapitel auf die leicht „lesbaren“ Abhandlungen in:
Joos, Lehrbuch der Theoretischen Physik, Aula-Verlag Wiesbaden, 15. Auflage, 1989, Drittes Buch, Elftes
Kapitel Elektromagnetische Wellen. IV. Teil. Der Einfluß der Begrenzung (Theorie der Beugung), Seite 363
bis Seite 368 und
Eugene Hecht, Optik, Oldenbourg-Verlag, München, Wien, 4. Auflage, 2002, Abschnitt 10.4 Die skalare
Beugungstheorie von Kirchhoff, Seite 819 bis Seite 824.

Ziel dieses Kapitels ist die Herleitung des Fresnel-Kirchhoff’schen Beugungsintegrals über das
2. Green’sche Theorem aus den Maxwell’schen Gleichungen, den grundlegenden Gleichungen
der Elektrodynamik. Achtung! Aus praktischen Erwägungen verwenden wir in diesem
Kapitel eine ander Notation als im Abschnitt 11.3 Fresnel’sche Zonen.

12.1 Vorbereitung – Helmholtz-Gleichung

Mit dem

Potentialansatz E⃗ = −gradΦ− ∂A⃗

∂t
, B⃗ = rotA⃗ (93)

und der
Lorenz-Eichung div A⃗ + 1

c2
m

∂Φ

∂t

!= 0

liefern die Maxwell’schen Gleichungen die skalare inhomogene Wellengleichung

1
c2

m

∂2

∂t2
Φ−△Φ = 1

ε
ϱ

(
Quellenterm 1

ε ϱ , Dichte freier Ladungen bzw. elektrische Ladungsdichte ϱ
)

und die vektorielle inhomogene Wellengleichung

1
c2

m

∂2

∂t2
A⃗−△A⃗ = µ j⃗

(
Quellenterm µ j⃗ , elektrische Stromdichte j⃗

)
.

Die Lichtgeschwindigkeit in einem Medium ist cm. Die Quellenterme verschwinden in einem
Bereich ohne freie elektrische Ladungen und ohne elektrische Ströme – z. B. in einem
Dielektrikum. Betrachten wir das elektromagnetische Wechselfeld außerdem in einem Bereich
ohne Materie, d. h. im Vakuum, so müssen wir statt cm die Vakuumlichtgeschwindigkeit
c verwenden und erhalten die (quellenfreien) homogenen Wellengleichungen

△Φ− 1
c2

∂2

∂t2
Φ = 0 , (94)

△A⃗− 1
c2

∂2

∂t2
A⃗ = 0⃗ . (95)

Dabei handelt es sich um lineare partielle Differentialgleichungen 2. Ordnung mit konstanten
Koeffizienten. Warum und in welcher Weise es sich zudem um Wellengleichungen handelt,
wird sehr ausführlich beschrieben von Rainer J. Jellito1.

1Rainer J. Jellito, Studientext – Elektrodynamik, Theoretische Physik, 3. Auflage, Aula-Verlag, Wiesbaden,
1994, Abschnitt 5.2 Die Wellengleichung, Seite 119 bis Seite 130.
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Wir zeigen dies an drei Beispielen. Zunächst setzen wir in (94) für Φ die „verallgemeinerte“ Wellenfunktion

F (x, t) = a · f(x− vt)

mit der Ausbreitungsgeschwindigkeit v ein:

∂2

∂x2

[
a · f(x− vt)

]
= 1

v2
∂2

∂t2

[
a · f(x− vt)

]
⇒ a · f ′′(x− vt) = 1

v2 a · f ′′(x− vt) · (−v)2 = a · f ′′(x− vt) . □

Jetzt setzen wir in (94) für Φ die Kugelwellenfunktion

E(r, t) = 1
r

· sin(kr − ωt) (96)

mit ω = c k und der Ausbreitungsgeschwindigkeit c = ω
k

ein. Allerdings müssen wir dabei den Laplace-Operator
in Kugelkoordinaten

△r = 1
r2

∂

∂r

[
r2 ∂

∂r

]
verwenden:

1
r2

∂

∂r

[
r2 ∂

∂r

(
1
r

· sin(kr − ωt)
)]

= 1
c2

∂2

∂t2

(
1
r

· sin(kr − ωt)
)

⇒ −k2

r
sin(kr − ωt) = 1

c2

(
−ω2

r
sin(kr − ωt)

)

= −k2

r
sin(kr − ωt) . □

Schließlich setzen wir die Funktion
E⃗(r⃗, t) = −iωA⃗0 ei(k⃗r⃗−ωt) ,

die wir weiter unten herleiten und benötigen werden, in die vektorielle Wellengleichung (95) ein und finden
mit

ω = c ·
∣∣k⃗ ∣∣ ⇒ ω2 = c2k2

dass auch diese Funktion die Wellengleichung erfüllt und somit eine Wellenfunktion ist:

ik2ωA⃗0 ei(k⃗r⃗−ωt) = 1
c2 ω

2 iω A⃗0 ei(k⃗r⃗−ωt) = ik2ωA⃗0 ei(k⃗r⃗−ωt) . □

Von den Potentialgleichungen (94) und (95) zurück zum E⃗-Feld kommen wir, indem wir zunächst den
Potentialansatz (93) in die homogene (quellenfreie) Maxwell’sche Gleichung

rot E⃗ + ∂

∂t
B⃗ = 0⃗

einsetzen:
rot E⃗ + ∂

∂t
rot A⃗ = rot E⃗ + rot ∂

∂t
A⃗ = 0⃗ ⇔ E⃗ = − ∂A⃗

∂t
. (97)

Setzen wir jetzt für A⃗ die Wellenfunktion A⃗(r⃗, t) = A⃗0 ei(k⃗r⃗−ωt) an, wobei die Amplitude A⃗0 nicht von t
abhängt, resultiert aus (97)

E⃗(r⃗, t) = −iωA⃗0︸ ︷︷ ︸
= E⃗0

ei(k⃗r⃗−ωt) = E⃗0 ei(k⃗r⃗−ωt) ,

ebenfalls eine Wellenfunktion, wie wir oben bereits gezeigt hatten.
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In der Optik sind vor allem das E⃗-Feld, d. h. das optische Feld und folglich die skalare
homogene Wellengleichung (94) von Bedeutung, weil bei Abwesenheit zeitlich-veränderlicher
Magnetfelder gemäß des Potentialansatzes (93) allein

E⃗ = −gradΦ ←→ Φ = −
∫

E⃗ ·dr⃗

gilt. Setzen wir dies in (94) ein, resultiert

△
(
−
∫

E⃗ dr⃗

)
︸ ︷︷ ︸

= Φ

= 1
c2

∂2

∂t2

(
−
∫

E⃗ dr⃗

)
︸ ︷︷ ︸

= Φ

⇒ −
∫
△ E⃗ dr⃗ = −

∫ 1
c2

∂2

∂t2
E⃗ dr⃗ ⇒

△ E⃗(r⃗, t) = 1
c2

∂2

∂t2
E⃗(r⃗, t) bzw.


△Ex

△Ey

△Ez

 =


1
c2

∂2

∂t2 Ex

1
c2

∂2

∂t2 Ey

1
c2

∂2

∂t2 Ez

 .

Wie das skalare Potential Φ so erfüllt also auch das aus Φ hervorgehende elektrische Feld E⃗
die Wellengleichung (94).

In der skalaren Beugungstheorie von Kirchhoff sind vereinfachend nur monochromatische
Wellen mit ω = c |k⃗| = const von Interesse. Außerdem beschränkt sich diese Theorie auf
ebene Wellen oder Kugelwellen. Ebene Wellen E⃗(r⃗, t) = E⃗0 ei(k⃗r⃗−ωt) hängen nur in einer
Richtung vom Ort ab, nämlich in ihrer Ausbreitungsrichtung, der Richtung des Wellenvektors
k⃗ . Kugelwellen E⃗(r, t) = E⃗0

r ei(kr−ωt), hier praktischerweise dargestellt in Kugelkoordinaten,
lösen für r ̸= 0 ebenfalls die Wellengleichung (94). Im Punkt r = 0 liefern sie jedoch mit der
Wellengleichung die Beziehung

(
△r + k2) e±i(kr−ωt)

r
=
(
△r + ω2

c2

)
e±i(kr−ωt)

r
= − 4π δr⃗ ,

„ Wichtig ist nun für uns, zu sehen, daß die von uns untersuchten ebenen Wellen
auch die Maxwellschen Gleichungen selbst lösen, sofern die Quellterme ϱ und j⃗
identisch verschwinden. Das zeigt uns nämlich die Existenz elektromagnetischer
Wellen, welche sich, einmal angeregt, im Vakuum ungedämpft fortpflanzen. . . .
Da die Maxwellschen Gleichungen linear sind, werden der Real- und der Imaginär-
teil komplexer Lösungen in ihnen nicht gemischt. Finden wir also, dass bereits die
komplexen Wellen Lösungen dieser Gleichungen sind, so können wir . . . durch-
gängig mit ihnen rechnen und den Übergang zum Realteil erst am Endergebnis
vollziehen. Dieses Verfahren erleichtert unsere Untersuchungen beträchtlich.“2

Verwenden wir also an Stelle des Potentials Φ in der skalaren Wellengleichung (94) als
Lösungsfunktion die Funktion des E⃗-Feldes einer monochromatischen elektromagnetischen
Welle, z. B. die Kugelwellenfunktion (96)

E(r, t) = 1
r

ei(kr−ωt) = 1
r

eikr · e−iωt .

Dann können wir (94) mit dem Produktansatz nach den Koordinaten r und t in zwei
gewöhnliche Differentialgleichungen separieren, die voneinander unabhängig und jeweils nur

2Zitiert aus: Rainer J. Jellito, Studientext – Elektrodynamik, Theoretische Physik, 3. Auflage, Aula-Verlag,
Wiesbaden, 1994, Seite 131.
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von einer Variablen abhängig sind:

Produktansatz : E(r, t) = E(r) · T (t) ⇒

{
Ortsanteil E(r) = 1

r eikr

Zeitanteil T (t) = e−iωt
.

Setzen wir also den Produktansatz in die Wellengleichung (94) ein:

△r E(r) · T (t) − 1
c2

d2 T (t)
dt2 · E(r) = 0 .

Mittels Division dieser Gleichung durch E(r) · T (t) erfolgt dann die Separation:

△r E(r)
E(r) = 1

c2
T̈ (t)
T (t) = const = κ .

κ ist die Separationskonstante. Uns interessiert im Folgenden nur die daraus resultierende
ortsabhängige gewöhnliche lineare homogene Differentialgleichung 2. Ordnung

△r E(r)− κ · E(r) = 0 . (98)

Mit der Lösungsfunktion E(r) = 1
r eikr in (98) bestimmen wir die Separationskonstante κ

bezüglich unserer Kugelwellenfunktion. Wir erhalten als Ergebnis

− 1
r
· k2 · eikr − κ · 1

r
· eikr = 0 ⇔ κ = −k2

und damit schließlich die

Helmholtz-Gleichung △E + k2E = 0 .
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12.2 Die Kirchhoff’sche Formel

Die Fresnel-Kirchhoffsche Beugungstheorie ist eine skalare Theorie, weil nur eine der beiden
zur Wellennormalen k⃗/k senkrechten Komponenten von

E⃗(r⃗, t) = E⃗0
(
r⃗
)
· ei(k⃗· r⃗−ωt) = E⃗0

(
r⃗
)
· ei(kr−ωt) = E⃗

(
r⃗
)
· e−iωt

betrachtet wird. Wenn also das E⃗-Feld beispielsweise genau in z-Richtung propagiert, be-
trachten wir die Ex- oder die Ey-Komponente. Für die im Folgenden betrachtete Komponente
schreiben wir mit der Amplitude E0 und dem Phasenwinkel ϕ = kr − ωt kurz

E(r⃗, t) = E0(r⃗ ) · ei(kr−ωt) bzw. im Fall einer Kugelwelle E(r, t) = E0(r) · ei(kr−ωt) .

Und weil uns im Folgenden nur der ortsabhängige Anteil E der monochromatischen Ku-
gelwellenfunktion E(r0, t) interessiert, machen wir hinsichtlich der Zeitabhängigkeit den
Ansatz

E(r0, t) = E(r0) · e−i ωt mit ω =
∣∣k⃗ ∣∣ · c = k · c = const und k = 2π

λ
.

Die Funktion E
(
r0) löst die bereits gezeigte Helmholtz-Gleichung

△E + k2 E = 0 ⇔ △E = −k2 E .

Angenommen wir haben außer der Funktion E eine weitere Funktion Ψ , die ebenfalls die
Wellengleichung und damit die Helmholtz-Gleichung erfüllt. Unter Berücksichtigung der
Helmholtz-Gleichung ergibt dann das 2. Green’sche Theorem mit diesen beiden Funktionen
bei der Integration über ein beliebiges Raumgebiet und dortiger Stetigkeit der Integranden∮

S

(
E gradΨ − Ψ grad E

)
·dS⃗ =

∫
V

(
E △Ψ − Ψ △E

)
dV

=
∫
V

[
E
(
− k2 Ψ

)
− Ψ

(
− k2E

)]
dV (99)

=
∫
V

k2 (ΨE − EΨ)︸ ︷︷ ︸
= 0

dV = 0 .

Als Funktion Ψ wählen wir den Ortsanteil der vom Punkt P des Integrationsgebiets ausge-
henden Kugelwelle (siehe Abbildung 22)

Ψ = eikr

r
.

Weil die Kugelwellenfunktion und auch ihr Ortsanteil in P eine Unendlichkeitsstelle
bzw. eine Singularität besitzen, können wir nicht ohne weiteres über das gesamte In-
tegrationsgebiet integrieren. Zumindest ist die Beziehung (99) nur dann mit Sicherheit
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Abb. 22 Zur Herleitung der Kirchhoff’schen Formel. Das Integrationsgebiet, das von der geschlossenen
Fläche S umhüllt wird, ist von beliebiger Gestalt! Weil wir hier die freie Wellenausbreitung ohne
irgendwelche Hindernisse betrachten, ist die Hülle S allein mathematischer Natur, also nur gedacht und
nicht „materiell“. Der Abstand r0 wird von O aus und der Abstand r wird von P aus gemessen. n⃗0 ist der
Einheitsnormalenvektor auf S . Weiterhin gilt Ψ = Ψ(r) und E = E(r0) mit

−−→
PQ = r⃗ und −−→PO = r⃗ ′ ⇒ r0 =

∣∣r⃗ − r⃗ ′
∣∣ .

gleich Null, wenn die Singularität nicht zum Integrationsgebiet gehört. Die Idee zur Lösung
dieses Problems ist folgende Vorgehensweise:

1. Wir schließen die Singularität aus dem Integrationsgebiet aus, indem wir P als Mittel-
punkt für eine kleine Kugel innerhalb des Integrationsgebiets wählen.

2. Das Integral über die gesamte Oberfläche des Integrationsgebiets setzt sich dann zusam-
men aus dem Integral über die Außenfläche S und dem Integral über die Innenfläche
bzw. die Kugeloberfläche und ist gemäß (99) aber immer noch gleich Null.

3. Schließlich lassen wir den Radius r der kleinen Kugel gegen Null gehen, d. h. wir lassen
die Kugel auf den Punkt P schrumpfen und schauen, welchen Beitrag P zum Integral
leisten kann. Wenn überhaupt, kann ein Beitrag zum Integral nur aus dem Punkt P
stammen, weil das Integral (99) unter Ausschluss von P stets verschwindet. Anders
gesagt, der Grenzwert des Oberflächenintegrals der kleinen Kugel für r → 0 liefert uns
den Wert des Volumenintegrals über das gesamte Integrationsgebiet einschließlich des
Punktes P in symbolischer Schreibweise wie folgt:∮

S

· · · dS +
∮

Kugel

· · · dS = 0 ⇔
∮
S

· · · dS = −
∮

Kugel

· · · dS =⇒

lim
Kugelradius→0

∮
S

· · · dS

︸ ︷︷ ︸
=

∮
S

···dS einschließlich P

= lim
Kugelradius→0

−
∮

Kugel

· · · dS . (100)

Wenn das vektorielle Flächenelement dS⃗ der äußeren Oberfläche S nach außen zeigt, muss
das der Kugeloberfläche im Innern radial nach innen zum Punkt P zeigen, damit wir die
beiden Flächenteilintegrale wie folgt addieren können:3∮

S

(
E gradeikr

r
− eikr

r
grad E

)
·dS⃗ +

∮
Kugel

(
E gradeikr

r
− eikr

r
grad E

)
·dS⃗ = 0 . (101)

3Um das einzusehen, kann man einen Schnitt derart durch das gesamte Integrationsgebiet (es handelt sich
hier um einen doppelt zusammenhängenden Bereich) legen, dass der Schnitt auch die Kugel zweiteilt. Setzt
man dann die Hüllenintegrale beider Teile zusammen, heben sich die Schnittflächenintegrale gegenseitig auf.
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Berechnung des Grenzwertes des Integrals über die kleine Kugel für r → 0 :∮
Kugel

(
E gradeikr

r
− eikr

r
grad E

)
·dS⃗ (102)

• Wir rechnen in Kugelkoordinaten, d. h. der Einheitsnormalenvektor e⃗r zeigt ausgehend
vom Kugelmittelpunkt nach außen. Folglich gilt für das nach innen zeigende vektorielle
Kugelflächenelement

dS⃗ = −e⃗r · dS = −e⃗r · r2 sinϑ dϑdφ .

• Die Funktion E und der Gradient von E seien im gesamten Integrationsgebiet stetig,
weshalb E im Punkt P den endlichen Wert Ep annimmt.

• Wegen der Stetigkeit von E und weil dS für r → 0 mit r2 abnimmt, im Nenner von
Ψ = eikr/r das r aber nur in der ersten Potenz steht, verschwindet der Subtrahend im
Integranden von (102) für r → 0 gemäß∮

Kugel

−
(
e⃗r ·grad E

)
· eikr · r︸ ︷︷ ︸

= 0 für limr→0

· sinϑ dϑ dφ .

• Mit
gradΨ = grad eikr

r
=
(

ik
r
− 1
r2

)
eikr · e⃗r

verbleibt von (102) nur das Integral∮
Kugel

E · grad eikr

r
·dS⃗ =

∮
Kugel

E ·
(

ik
r
− 1
r2

)
eikr · e⃗r ·

(
− e⃗r

)
· r2 sinϑ dϑ dφ

=
∮

Kugel

E ·
(
1− ikr

)
eikr · sinϑ dϑ dφ

mit dem Grenzwert

lim
r→0 ⇒
E→Ep

∮
Kugel

E ·
(
1− ikr

)
eikr · sinϑ dϑ dφ = Ep ·

∮
Kugel

sinϑ dϑ dφ = Ep · 4π .

Das Hüllenintegral (101) über die geschlossene Oberfläche S des gesamten Integrationsgebiets
einschließlich der Singularität im Punkt P ist mit (100)∮

S

(
E gradeikr

r
− eikr

r
grad E

)
·dS⃗ = −Ep · 4π . (103)

Durch Äquivalenzumformung (Achtung Vorzeichen!) folgt daraus schließlich die

Kirchhoff’sche Formel Ep = 1
4π

∮
S

(
eikr

r
grad E − E gradeikr

r

)
·dS⃗ (104)

zur Berechnung des Ortsanteils E des E-Feldes im Punkt P , wenn die Funktionen E(r0) und
Ψ(r) auf der geschlossenen Oberfläche des Integrationsgebiets bekannt sind. Die Kirchhoff’sche
Formel wird auch Kirchhoff’sche allgemeine Beugungsformel genannt.
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12.3 Herleitung des Fresnel-Kirchhoff’schen Beugungsintegrals

Zur Herleitung des Fresnel-Kirchhoff’schen Beugungsintegrals wenden wir die im Abschnitt
12.2 hergeleitete Kirchhoff’scher Formel (104) auf den Fall an, dass sich im Punkt O die
primäre Lichtquelle befindet, welche die Kugelwelle

E = eikr0

r0

mit der gleichen Wellenzahl k wie in Ψ emittiert (siehe Abbildung 23).

Abb. 23 Zur Herleitung des Fresnel-Kirchhoff’schen Beugungsin-
tegrals. Vereinfachend ist der lichtundurchlässige Schirm hier eben
dargestellt. Schirm und Öffnung im Schirm dürfen aber beliebig ge-
formt sein. Während mit Abbildung 22 die freie Wellenausbreitung
betrachtet wird, dort die Hülle S des Integrationsgebiets also nicht
„materiell“ sondern nur gedacht ist, soll hier der Schirm bis auf die
Öffnung „materiell“ sein. Die Halbsphäre spielt bei diesen Überlegun-
gen keine Rolle, weil sie im Unendlichen liegt und keinen Beitrag zum
Flächenintegral leistet
(siehe Abschnitt 12.5 Zur auslaufenden Welle im Unendlichen).

Weiterhin sind für die Herleitung noch einige Annahmen und Näherungen erforderlich:

• Die geschlossene Außenfläche (Integrationsfläche) S, die das Integrationsgebiet mit
dem Punkt P umhüllt, setze sich zusammen beispielsweise aus einer Halbsphäre mit
unendlichem Radius und ihrer Basisfläche, die nicht eben sein muss. Die folglich
ebenfalls bis ins Unendliche ausgedehnte Basisfläche sei ein opaker Schirm mit einer
lichtdurchlässigen Öffnung beliebiger Gestalt.

• O befinde sich im Abstand r0 vor und P in endlichem Abstand r hinter dieser Öffnung.

• Der lichtundurchlässige Schirm liefert keinen Beitrag zum Integral, was intuitiv klar ist.

• Und auch die im Unendlichen liegende Halbsphäre von S soll keinen Beitrag zum
Integral leisten (siehe Abschnitt 12.5 Zur auslaufenden Welle im Unendlichen).

• Weiterhin nehmen wir an, dass innerhalb der Öffnung die Feldausbreitung ungestört
sei, d. h., die Störung infolge der Feldbegrenzung durch den opaken Schirm soll nicht
berücksichtigt werden.

• Innerhalb der Öffnung gelte also für die einfallende Welle

E = eikr0

r0
mit grad E ,

wobei
r0 e⃗r0 der von O zu einem Punkt Q

in der Öffnung gezogene Radiusvektor und

r e⃗r der von P zu einem Punkt Q

in der Öffnung gezogene Radiusvektor ist.
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Achtung! Während bei der Herleitung der Kirchhoff’schen Formel die Integrationsfläche
die (geschlossene) Hülle S war, beschränkt sich jetzt die Integrationsfläche nur noch auf die
Fläche der Öffnung im Schirm.
Der Einheitsnormalenvektor auf der Öffnungsebene sei n⃗0. Er zeige wie in Abbildung 22 vom
Integrationsgebiet ausgehend nach außen. Die folgenden Terme

E = eikr0

r0
⇒ grad E =

(
ik
r0

eikr0 − 1
r2

0
eikr0

)
· e⃗r0 =

(
ik − 1

r0

)
eikr0

r0
· e⃗r0 ,

Ψ = eikr

r
⇒ gradΨ =

(
ik
r

eikr − 1
r2 eikr

)
· e⃗r =

(
ik − 1

r

)
eikr

r
· e⃗r ,

e⃗r0 ·dS⃗ = e⃗r0 · n⃗0 dS = cos
(
n⃗0, e⃗r0

)
dS ,

e⃗r ·dS⃗ = e⃗r · n⃗0 dS = cos
(
n⃗0, e⃗r

)
dS .

sind also in (104) einzusetzen. Dabei müssen wir beachten, dass das Flächenintegral nur über
die Öffnung läuft:

Ep = 1
4π

∫
Öffnung

[
eikr

r

(
ik − 1

r0

)
eikr0

r0
· e⃗r0 −

eikr0

r0

(
ik − 1

r

)
eikr

r
· e⃗r

]
· n⃗0 dS

= 1
4π

∫
Öffnung

eik(r+r0)

r · r0

[(
ik − 1

r0

)
cos
(
n⃗0, e⃗r0

)
−
(

ik − 1
r

)
cos
(
n⃗0, e⃗r

)]
dS .

Als weitere Näherung vernachlässigen wir in den runden Klammern die Quotienten 1/r0
und 1/r gegenüber ik = i 2π/λ , weil in der Praxis die Abstände zwischen Lichtquelle O bzw.
Beobachtungspunkt P und der Öffnung sehr groß sind im Vergleich zur Wellenlänge λ :

r0 ≫ λ und r ≫ λ =⇒ 1
r0
≪ 2π

λ
= k und 1

r
≪ 2π

λ
= k .

Außerdem können wir dann ik = i 2π/λ vor das Integral ziehen:

Ep = i
2λ

∫
Öffnung

eik(r+r0)

r · r0

[
cos
(
n⃗0, e⃗r0

)
− cos

(
n⃗0, e⃗r

)]
dS .

Ein Vergleich mit Abbildung 22 zeigt, dass ∢
(
n⃗0, e⃗r0

)
ein stumpfer Winkel ist und ∢

(
n⃗0, e⃗r

)
ein spitzer Winkel. Somit gilt:

cos
(
n⃗0, e⃗r0

)
< 0 , cos

(
n⃗0, e⃗r

)
> 0 .

Wir vertauschen deshalb die Kosinusse in der eckigen Klammer und ziehen das dabei resultie-
rende Minuszeichen vor das Integral. Dann ziehen wir den Faktor 1/2 in die eckige Klammer
und erhalten

Ep = − i
λ

∫
Öffnung

eik(r+r0)

r · r0

[
cos
(
n⃗0, e⃗r

)
− cos

(
n⃗0, e⃗r0

)
2

]
dS .
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Wie wir sehen, besitzt die rechte Seite dieser Gleichung nicht die Dimension (Maßeinheit)
der elektrischen Feldstärke E . Wir führen deshalb den Faktor ϵ0 ein, welcher der Feldstärke-
amplitude der Punktquelle in O entspricht und nicht mit der elektrischen Feldkonstante ε0
verwechselt werden darf. Damit haben wir das
Fresnel-Kirchhoff’sche Beugungsintegral hergeleitet:

Ep = − i ϵ0
λ

∫
Öffnung

eik(r+r0)

r · r0

[
cos
(
n⃗0, e⃗r

)
− cos

(
n⃗0, e⃗r0

)
2

]
dS . (105)

Gemäß Abbildung 22 und Abbildung 24 ist der Term in eckigen Klammern der im folgenden
Abschnitt 12.4 diskutierte Neigungsfaktor K :

cos
(
n⃗0, e⃗r

)
= cosϑ und − cos

(
n⃗0, e⃗r0

)
= cosϑ0 ⇒

K = 1
2

[
cos
(
n⃗0, e⃗r

)
− cos

(
n⃗0, e⃗r0

)]
= 1

2
(

cosϑ+ cosϑ0
)

.

Abb. 24 Neigungsfaktor K = 1
2 (cosϑ0 + cosϑ) im

Fall einer Aperturblende bzw. einer Öffnung.

Wenn r und r0 groß sind gegen die Ausdehnung der Öffnung, so können wir in (105) sowohl
r und r0 im Nenner als auch K als nahezu konstant über die Öffnung betrachten und vor
das Integral ziehen:

Ep(r) = − i ϵ0
λ

K

r · r0

∫
Öffnung

eik(r+r0) · dS . (106)

Weil der Faktor k = 2π/λ im Exponenten groß ist, können wir dort r und r0 nicht als konstant
annehmen und dürfen folglich die Exponentialfunktion eik(r+r0) nicht vor das Integral ziehen.

Wenn wir dann noch das Fresnel-Kirchhoff’sche Beugungsintegral (105) mit dem
Zeitanteil T (t) = e−iωt kombinieren und zudem den konstanten „Phasenfaktor“ −i = e−i π

2

berücksichtigen, resultiert das E-Feld im Beobachtungspunkt P :

Ep(r, t) = Ep(r) · T (t) = ϵ0
λ

K

r · r0

∫
Öffnung

ei [ k(r+r0) − ωt − π
2 ] · dS .

Die aus dem konstanten „Phasenfaktor“ resultierende Phasenverschiebung des Feldes
im Beobachtungspunkt P um −π

2 gegenüber der einfallenden Primärwelle ergibt sich aus
der Störung der Wellenausbreitung durch die Apertur. Die Wellenausbreitung von den
Punkten Q auf der „Aperturfläche“ zum Punkt P wird nämlich bestimmt durch die zeitliche
Änderung bzw. Ableitung der Feldstärke innerhalb der Apertur. Und da der Zeitanteil
der primären monochromatischen Welle beschrieben wird durch e−iωt , ist dessen zeitliche
Ableitung proportional zur Kreisfrequenz ω = 2πν und insbesondere proportional zu −i = 1

i .
Eine zum Phänomen der Phasenverschiebung analoge Diskussion findet sich in E. Hecht,
Optik, 4. Auflage, Oldenbourg-Verlag, München, Wien, 2005, Abschnitt 4.2.3 Transmission
und Brechungsindex, Seite 160 bis Seite 164.
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12.4 Der Neigungsfaktor K

Allgemein ist der Neigungsfaktor K = 1
2

(
cosϑ0 + cosϑ

)
(siehe Abbildung 24).

Wir betrachten zunächst den speziellen Fall der freien Ausbreitung einer Kugelwelle:

Abb. 25 Die freie Ausbreitung einer Kugelwelle und das Abstrahlungsverhalten der sekundären
Elementarwellen. k⃗ ist der Wellenvektor der betrachteten primären Kugelwellenfront.
Das Abstrahlungsverhalten der Sekundärwellen bei freier Ausbreitung der Primärwelle wird beschrieben
durch den sog. Neigungsfaktor

K(ϑ) = 1
2 (1 + cosϑ) mit 0 ≤ K ≤ 1 .

Der Feldstärkebeitrag der Sekundärwellen ist in Ausbreitungsrichtung der Primärwelle maximal entsprechend
K = 1 . Der Feldstärkebeitrag der Sekundärwellen verschwindet entgegengesetzt zur Ausbreitungsrichtung
der Primärwelle entsprechend K = 0 . Diese Theorie stimmt mit dem experimentellen Ergebnis überein,
wonach die sekundären Elementarwellen einer primären Kugelwelle insgesamt keine zentripetalen sondern
nur zentrifugale Wellenfronten bilden.
(Abbildung nach: Eugene Hecht, Optik, 4. Auflage, Oldenbourg Verlag München Wien, 2005, Seite 781)

Bei freier Wellenausbreitung wie in Abbildung 25 gilt:

• ϑ0 ist der Winkel ϑ0 = 0 zwischen der Ausbreitungsrichtung der Primärwelle und dem
Primärwelleneinfallslot auf die Tangentialebene an den Punkt Q der Kugelwellenfront.
• ϑ ist der Winkel zwischen der Ausbreitungsrichtung einer Sekundärwelle und dem Primär-
wellenausfallslot auf die Tangentialebene an den Punkt Q der Kugelwellenfront.

In der Realität bzw. allgemein erfolgt die Wellenausbreitung jedoch gestört, z. B. durch die
Begrenzung mittels einer Aperturblende wie in den Abbildungen 23 und 26 .
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Abb. 26 Neigungsfaktor K = 1
2 (cosϑ0 + cosϑ) im

Fall einer Aperturblende bzw. einer Öffnung.

Im Fall einer Aperturblende in einem opaken Schirm gemäß Abbildung 26 gilt:
• ϑ0 ist der Winkel zwischen der Ausbreitungsrichtung der Primärwelle und dem Primärwel-
leneinfallslot auf die Öffnungsebene.
• ϑ der Winkel zwischen der Ausbreitungsrichtung der Sekundärwelle und dem Primärwel-
lenausfallslot auf die Öffnungsebene.

12.5 Zur auslaufenden Welle im Unendlichen

Wir diskutieren die Aussage:
Eine auslaufende Welle im Unendlichen leistet keinen Betrag zum Feldstärkeintegral im
Beobachtungspunkt P .

• Argumentation mit dem Neigungsfaktor K :
Betrachten wir bezüglich Abbildung 25 eine Kugelwellenfront im Unendlichen, also
bei r0 = R→∞ . Liegt dann (bei festen Punkten O und P ) der Punkt Q auf dieser
Wellenfront im Unendlichen, so gilt

R→∞ ⇒ ϑ→ π ⇒ K → 0 .
In diesem Fall würden also alle Sekundärwellen genau entgegengesetzt zu den zugehöri-
gen Primärwellen bei P einlaufen. In Analogie zu Abbildung 25 gilt auch für die im
Unendlichen liegende Halbsphäre in Abbildung 23

lim
R→∞

K = 0 ,

sodass auch dort die auslaufenden Wellen von der im Unendlichen liegenden Halbsphäre
her keinen Beitrag zum Feldstärke-Flächenintegral für den Punkt P leisten. Und weil
außerdem der Schirm opak ist, braucht in dem von der Abbildung 23 beschriebenen
Modell das Flächenintegral schließlich nur über die Öffnung im Schirm zu laufen.
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• Argumentation mit der Sommerfeld’schen Strahlungsbedingung :
(Quelle: Joseph W. Goodman, Introduction to Fourier Optics, 2. Auflage, McGraw-Hill, USA, 1996,
Abschnitt 3.4 THE KIRCHHOFF FORMULATION OF DIFFRACTION BY A PLANAR SCREEN,
Seite 42 bis Seite 46.)

Wir gehen aus von der Kirchhoff’schen Formel (104)

Ep = 1
4π

∮
S

(
eikr

r
grad E − E grad eikr

r

)
·dS⃗ ,

d. h. von der freien Wellenausbreitung gemäß der Abbildung 22 bzw. von der freien
Kugelwelle gemäß der Abbildung 25 mit den Kugelwellenfunktionen

Ψ = eikr

r
⇒ gradΨ = grad eikr

r
=
(

ik
r
− 1
r2

)
eikr · e⃗r ,

E = eikr0

r0
⇒ grad E = grad eikr0

r0
=
(

ik
r0
− 1
r2

0

)
eikr0 · e⃗r0 .

Zur Vereinfachung nehmen wir jetzt an, dass die geschlossene Integrationsfläche S eine
Kugeloberfläche mit dem Radius r und dem nach außen zeigenden Einheitsnormalen-
vektor n⃗0 ist. Das zugehörige vektorielle Kugelflächenelement ist dann

dS⃗ = n⃗0 · dS = n⃗0 · r2 sin θ dθ dφ = n⃗0 · r2 dΩ .

Hierbei ist dΩ = sin θ dθ dφ das Raumwinkelelement, welches bei Integration über den
gesamten Raum den

vollen Raumwinkel ΩR3 =
π∫

θ=0

2π∫
φ=0

sin θ dθ dφ =
∫
R3

dΩ = 4π

liefert. R3 ist hier der Index für den gesamten (dreidimensionalen) Raum. Die Norma-
lenkomponenten der Gradienten von Ψ und E sind

gradΨ · n⃗0 = ∂Ψ

∂n
=
(

ik
r
− 1
r2

)
eikr · e⃗r · n⃗0 ,

grad E · n⃗0 = ∂E
∂n

=
(

ik
r0
− 1
r2

0

)
eikr0 · e⃗r0 · n⃗0 . (107)

Für die Argumentation mit der Sommerfeld’schen Strahlungsbedingung machen wir
jetzt die Näherungen

für große r ⇒

 gradΨ =
(

ik
r
− 1
r2

)
eikr · e⃗r ≈ ik eikr

r
· e⃗r ,

e⃗r · n⃗0 ≈ 1 .

Diese Näherungen setzen wir unter Berücksichtigung von (107) in die Kirchhoff’sche
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Formel (104) ein:

Ep = 1
4π

∮
S

(
eikr

r
grad E − E grad eikr

r

)
·dS⃗

≈ 1
4π

∮
S

(
eikr

r
grad E − E ik eikr

r
e⃗r

)
·dS⃗

≈ 1
4π

∫
R3

(
eikr

r
grad E − E ik eikr

r
e⃗r

)
· n⃗0 · r2 dΩ

≈ 1
4π

∫
R3

eikr

r

(
∂E
∂n
− ik E

)
r2 dΩ ,

Ep ≈
1

4π

∫
R3

eikr

(
∂E
∂n
− ik E

)
r dΩ . (108)

Das Feld auf der Oberfläche einer unendlich großen Kugel leistet im Beobachtungs-
punkt P keinen Beitrag, wenn das Integral (108) verschwindet bzw. wenn für dessen
Integranden in isotroper Weise die

Sommerfeld’sche Strahlungsbedingung lim
r→∞

(
∂E
∂n
− ik E

)
r = 0

gilt. Diese Bedingung ist erfüllt, wenn E mindestens so schnell verschwindet wie eine
Kugelwelle, was hier wegen

E(r0) = eikr0

r0
= eikr0∣∣r⃗ − r⃗ ′

∣∣ mit r⃗ ′ = −−→PO = const , |r⃗ ′| = r′ ≪ r

der Fall ist. Diese Argumentation gilt analog auch im Abschnitt 12.3 für die im
Unendlichen liegende Halbsphäre (siehe Abbildung 23).

Wir hätten aber auch ganz einfach wie folgt argumentieren können:
Wenn der Radius r der Kugelwellenfront gegen Unendlich geht, dann geht auch r0
gegen Unendlich. Daraus folgt

⇒ e⃗r ⇈ n⃗0 ∧ e⃗r0 ⇈ n⃗0 ⇒ e⃗r · n⃗0 = e⃗r0 · n⃗0 = 1 .

Für den Grenzfall r →∞ dürfen wir also in der Kirchhoff’schen Formel (104)

r →∞ ⇒ r0 = r und e⃗r · n⃗0 = e⃗r0 · n⃗0 = 1 (109)

setzen:

Ep = 1
4π

∮
S

(
eikr

r
grad E − E grad eikr

r

)
·dS⃗

= 1
4π

∮
S

[
eikr

r

(
ik
r0
− 1
r2

0

)
eikr0 · e⃗r0 −

eikr0

r0

(
ik
r
− 1
r2

)
eikr · e⃗r

]
· n⃗0 dS
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⇒ mit (109) ⇒

lim
r→∞

Ep = 1
4π

∮
S

[
eikr

r

(
ik
r
− 1
r2

)
eikr − eikr

r

(
ik
r
− 1
r2

)
eikr

]
︸ ︷︷ ︸

= 0

dS = 0 . □

Im Grenzfall r →∞ verschwinden Integrand und Integral, d. h., die im Unendlichen
liegende Wellenfront einer Kugelwelle liefert keinen Feldstärkebeitrag im Beobachtungs-
punkt P .
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12.6 Anhang: Fresnel- und Fraunhofer-Beugung

Hinweis!
Dieser Abschnitt, ebenfalls auf der Grundlage des Lehrbuchs der Theoretischen Physik von Joos, ist die direkte
Fortsetzung der vorausgegangenen Abschnitte und eher von theoretischer als von praktischer Bedeutung. Er
kann übersprungen werden, weil wir den gleichen Inhalt praxisnah aufbereitet im Kapitel 13 nocheinmal
abhandeln.

Um es im Umgang mit dem Fresnel-Kirchhoff’schen Beugungsintegral in der Form (106)
bequemer zu haben, nehmen wir im Folgenden an, dass der opake Schirm mit seiner lichtdurch-
lässigen Öffnung eben sei und in der (x, y)-Ebene eines kartesischen Koordinatensystems
liege. Außerdem soll der Koordinatenursprung innerhalb der Öffnungsebene liegen, sodass
die z-Achse so verläuft, wie in Abbildung 27 dargestellt.

Abb. 27 Zur Beugung in einer ebenen Schirmöffnung beliebiger Gestalt. Nach
Joos, Lehrbuch der Theoretischen Physik, Aula-Verlag, Wiesbaden, 1989, 15. Auflage, Seite 367.

Dadurch besitzen die Punkte O, P und Q die Koordinaten

O := (x0, y0, z0) , P := (x, y, z) , Q := (ξ, η, 0) ,

sodass für die zugehörigen Abstände gilt

r2 = (x− ξ)2 + (y − η)2 + z2 ,

(110)
r2

0 = (x0 − ξ)2 + (y0 − η)2 + z2
0 .

Und die Abstände zum Koordinatenursprung, den wir hier kurz mit 0 bezeichnen, sind

R = P0 =
√
x2 + y2 + z2 ,

R0 = O0 =
√
x2

0 + y2
0 + z2

0 .
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Damit ist dann

K = 1
2

[
cos
(
n⃗0, e⃗r

)
− cos

(
n⃗0, e⃗r0

)]
= 1

2

(√
x2 + y2

R
+
√
x2

0 + y2
0

R0

)

und r und r0 im Nenner können wir ebenfalls durch R und R0 ersetzen, sodass aus (106)
zunächst

Ep = − i ϵ0
λ

K

R ·R0

∫
Öffnung

eik(r+r0) · dS (111)

wird. In der Exponentialfunktion unter dem Integral hängen r und r0 gemäß (110) von ξ
und η ab. Wir werden deshalb in der folgenden Nebenrechnung r und r0 bis zur 2. Ordnung
nach ξ und η an der Stelle ξ = η = 0 entwickeln und anschließend diskutieren, was die sich
daraus ergebenden Näherungen bedeuten.

Nebenrechnung: (Binomiale) Taylor-Entwicklung bzw. Binomialentwicklung von r + r0 = r(ξ, η) + r0(ξ, η)
an der Stelle ξ = η = 0 bis zur 2. Ordnung.

Es genügt, nur r zu entwickeln, weil die Entwicklung von r0 völlig analog ist. Für ξ = η = 0 schreiben wir
symbolisch (0, 0).

0. Ordnung

r(0, 0) =
[
(x− ξ)2 + (y − η)2 + z2

] 1
2
∣∣∣∣
(0,0)

=
(
x2 + y2 + z2) 1

2 = R .

1. Ordnung

∂

∂ξ
r(ξ, η)

∣∣∣∣
(0,0)

· ξ + ∂

∂η
r(ξ, η)

∣∣∣∣
(0,0)

· η

=
{

1
2

[
(x− ξ)2 + (y − η)2 + z2

]− 1
2 · 2(x− ξ) · (−1)

}∣∣∣∣∣
(0,0)

· ξ

+
{

1
2

[
(x− ξ)2 + (y − η)2 + z2

]− 1
2 · 2(y − η) · (−1)

}∣∣∣∣∣
(0,0)

· η

= −x ξ
R

+ −y η
R

= − x ξ + y η

R
.

2. Ordnung

1
2

(
∂2r

∂ξ2

∣∣∣∣
(0,0)

· ξ2 + 2 ∂2r

∂ξ ∂η

∣∣∣∣
(0,0)

· ξη + ∂2r

∂η2

∣∣∣∣
(0,0)

· η2

)

= 1
2
∂2r

∂ξ2

∣∣∣∣
(0,0)

· ξ2 + ∂2r

∂ξ ∂η

∣∣∣∣
(0,0)

· ξη + 1
2
∂2r

∂η2

∣∣∣∣
(0,0)

· η2

= 1
2

{[
(x− ξ)2 + (y − η)2 + z2

]− 1
2 + (x− ξ)1

2

[
(x− ξ)2 + (y − η)2 + z2

]− 3
2 · 2(x− ξ) · (−1)

}∣∣∣∣∣
(0,0)

· ξ2

+ (x− ξ) 1
2

[
(x− ξ)2 + (y − η)2 + z2

]− 3
2 · 2(y − η) · (−1)

∣∣∣∣∣
(0,0)

· ξη

+ 1
2

{[
(x− ξ)2 + (y − η)2 + z2

]− 1
2 + (y − η)1

2

[
(x− ξ)2 + (y − η)2 + z2

]− 3
2 · 2(y − η) · (−1)

}∣∣∣∣∣
(0,0)

· η2
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= 1
2

{
1
R

− x2

R3

}
· ξ2 − x y

R3 · ξ η + 1
2

{
1
R

− y2

R3

}
· η2

= 1
2
ξ2 + η2

R
− 1

2
(x ξ + y η)2

R3 .

Damit haben wir r + r0 entwickelt:

r + r0 = R − x ξ + y η

R
+ 1

2
ξ2 + η2

R
− 1

2

(
x ξ + y η

)2

R3

+ R0 − x0 ξ + y0 η

R0
+ 1

2
ξ2 + η2

R0
− 1

2

(
x0 ξ + y0 η

)2

R3
0

+ · · · .

Abschließend reihen wir die Glieder entsprechend ihrer Ordnung aneinander:

r + r0 = R + R0 − x ξ + y η

R
− x0 ξ + y0 η

R0

+ 1
2
ξ2 + η2

R
+ 1

2
ξ2 + η2

R0
− 1

2

(
x ξ + y η

)2

R3 − 1
2

(
x0 ξ + y0 η

)2

R3
0

+ · · · ,

r + r0 = R + R0 −
(
x

R
+ x0

R0

)
ξ −

(
y

R
+ y0

R0

)
η

+ 1
2
ξ2 + η2

R
+ 1

2
ξ2 + η2

R0
− 1

2

(
x ξ + y η

)2

R3 − 1
2

(
x0 ξ + y0 η

)2

R3
0

+ · · · .

(112)

Im Folgenden schreiben wir (112) in einer kompakteren Form und benutzen das Gleichheitszeichen, obwohl
wir auf die Fortsetzungspunkte am Ende der Entwicklung bis zur 2. Ordnung verzichten:

r + r0 = R + R0 + ϕ(ξ, η) (113)

mit

ϕ(ξ,η) =

−
(
x

R
+ x0

R0

)
ξ −

(
y

R
+ y0

R0

)
η︸ ︷︷ ︸

1. Ordnung

+ 1
2
ξ2 + η2

R
+ 1

2
ξ2 + η2

R0
− 1

2

(
x ξ + y η

)2

R3 − 1
2

(
x0 ξ + y0 η

)2

R3
0︸ ︷︷ ︸

2. Ordnung

.

Setzen wir die Entwicklung (113) einschließlich der zweiten Ordnung in das bereits teilweise
genäherte Fresnel-Kirchhoffsche Beugungsintegral (111) ein, so erhalten wir das Integral für
die Fresnel-Beugung

Ep = − i ϵ0
λ

K

R ·R0
eik(R+R0)

∫
Öffnung

eik ϕ(ξ,η) · dS (114)

und sprechen von der Nahfeldnäherung, mit der auch schon das Nahfeld bzw. das Fresnel-
Gebiet hinter der Öffnung beschrieben werden kann.4

4Um das Gebiet unmittelbar hinter der Öffnung erfassen zu können, sind auch Entwicklungsglieder der
Ordnung > 2 erforderlich. Die Beschreibung dieses Gebiets kann recht mühsam sein.
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Jetzt stellt sich die Frage, bis zu welchem Abstand R hinter der Öffnung das Nahfeld reicht? Anders gefragt, bis
zu welchem maximalen endlichen Abstand Rmax hinter der Öffnung sind die Entwicklungsglieder 2. Ordnung
bei gegebener Öffnung relevant?
Wir erreichen das gesuchte Rmax, wenn die Exponentialterme 2. Ordnung ausgehend von R im Unendlichen
erstmalig gleich ±1 werden, also bei

e±i n·π =
{

+1 für n = 0, 2, 4, . . . ,
−1 für n = 1, 3, 5, . . . .

Schauen wir uns den ersten der beiden in Frage kommenden Exponentialterme

eik· 1
2

ξ2+η2
R , (115)

e− ik· 1
2

(x ξ+y η)2

R3 (116)

an, so stellen wir fest, dass n = 0 ⇒ n · π = 0 nicht in Frage kommen kann, weil dann R gegen Unendlich
gehen müsste. Die (danach) nächstliegende Möglichkeit für ein maximales endliches R ist n = 1 ⇒ n · π = π
im Exponentialterm (115), also

eik· 1
2

ξ2+η2
R

!= ei π = −1 .
Mit dem Maximum5

ϱ̂ = max
(√

ξ2 + η2
)

⇒ max
(
ξ2 + η2) = ϱ̂2

der Öffnung bedeutet das

k · 1
2
ϱ̂2

R
= 2π

λ
· 1

2
ϱ̂2

R
= π

λ

ϱ̂2

R

!= π ⇔ ϱ̂2

λ ·R
!= 1 ⇔ Rmax = ϱ̂2

λ
. (117)

Es gilt also Faustregel6

Fresnel-Gebiet R ≤ ϱ̂2

λ
.

Schätzen wir abschließend noch den Exponenten von (116) für Rmax ab. Dazu vereinfachen wir ϱ̂, indem wir
den Fall η ≡ 0 und y ≡ 0 betrachten, sodass ϱ̂2 = ξ2. Damit erhalten wir

k · 1
2

(x ξ + y η)2

R3 = π

λ

(x ξ + y η)2

R3 ⇒ π

λ

x2 ϱ̂2

R3 = π x2 λ
2

ϱ̂4 .

Berücksichtigen wir jetzt, dass unter den o. g. Voraussetzungen

x = sinϑ ·Rmax = sinϑ · ϱ̂
2

λ
⇒ x2 = sin2 ϑ · ϱ̂

4

λ2

gilt, so ist der Exponent bei Rmax schließlich

π · sin2 ϑ =
{

0 für ϑ = 0,
π für ϑ = π

2 entsprechend x = R und z = 0 .

Zumindest bei kleinen Winkeln ϑ geht der Exponentialterm (116) gegen 1 .

Die weitergehende Näherung im Exponenten, d. h. wenn wir auf die quadratischen Glieder in
ξ und η verzichten und nur noch die konstanten und die linearen Glieder verwenden, ist die
Fernfeldnäherung und ergibt die Fraunhofer-Beugung

Ep = − i ϵ0
λ

K

R ·R0
eik(R+R0)

∫
Öffnung

e− ik
[(

x
R

+ x0
R0

)
ξ +
(

y
R

+ y0
R0

)
η
]
· dS , (118)

5ϱ̂ ist der maximale „Radius“ der Öffnung, also eine feste Größe, und darf nicht verwechselt werden mit der
Variablen ϱ im Kapitel 14.

6Mit der Apertur D findet man in der Literatur als Faustregel für das Nahfeld auch L < D2

λ
, wobei L = z

und z ≤ R :
ϱ̂

!= 1
2D ⇒ R ≤ ϱ̂2

λ
⇒ L ≤ R ≤ 1

4 · D2

λ
⇒ L < D2

λ
. □
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mit der sich nur noch das Fernfeld oder Fraunhofer-Gebiet beschreiben lässt. Das Fernfeld
beginnt nach einem Übergangsbereich etwa dort, wo der kleinere der beiden Abstände R
und R0 um etwa eine Größenordnung größer wird als ϱ̂2/λ :

Fraunhofer-Gebiet min
(
{R0, R}

)
≫ ϱ̂2

λ
, ϱ̂ = max

(√
ξ2 + η2

)
.

Das Symbol≫ bedeutet „mindestens eine Größenordnung größer als“. Und salopp ausgedrückt
gilt für die Fraunhofer-Beugung:

Je kleiner die Öffnung bei gegebener Wellenlänge bzw.
je größer die Wellenlänge bei gegebener Öffnung,
desto eher beginnt hinter der Öffnung das Fraunhofer-Gebiet.
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13 Optische Abbildung in Fresnel- und Fraunhofer-Näherung
Im Folgenden verwenden wir die Konvention
≫ heißt: „mindestens um 1 Größenordnung bzw. um den Faktor 10 größer als“.

Auch in diesem Kapitel werden wir die optische Feldstärke in einem Beobachtungspunkt
P in Fresnel- und in Fraunhofer-Näherung diskutieren. Während P im Abschnitt 12.6
aber als ein Punkt im radialen Abstand R vom Koordinatenursprung innerhalb der
Schirmöffnung betrachtet wurde, definieren wir jetzt die Punkte P als Punkte in der
(x, y)-Beobachtungsebene. Diese liegt im Abstand z planparallel zur Schirmebene mit
der (ebenen) Öffnung bzw. Apertur Σ (siehe Abbildung 28).

Abb. 28 Zur optischen Abbildung. Die Beobachtungsebene liegt im Abstand z planparallel zur Apertur
Σ im lichtundurchlässigen Schirm. Σ ist also u. a. definiert durch z = 0.

Auch wenn der Ansatz in diesem Kapitel zugunsten von mehr Praxisnähe etwas abgewandelt
wurde, so gehen wir trotzdem wieder aus vom Fresnel-Kirchhoff’schen Beugungsintegral (105)

Ep = − i ϵ0
λ

∫
Öffnung

eik(r+r0)

r · r0

[
cos
(
n⃗0, e⃗r

)
− cos

(
n⃗0, e⃗r0

)
2

]
dS .

Allerdings werden wir diese Formel im Folgenden deutlich vereinfachen. Und auch die
Fresnel- und die Fraunhofer-Näherung werden weitreichender ausfallen als im Abschnitt 12.6.
Für die optische Feldstärke Ep schreiben wir E(x, y, z) und wir gehen davon aus, dass die
Feldstärkefunktion u = u(ξ, η) in der Apertur bekannt ist. Das heißt, wir „verstecken“ alle
Größen, die sich auf die Quellenseite links vom Schirm beziehen, in der Funktion u(ξ, η) :

ϵ0 ·
eikr0

r0
·
− cos

(
n⃗0, e⃗r0

)
2 −→ u(ξ, η) .

Für den verbleibenden abbildungsseitigen Anteil des Neigungsfaktors K schreiben wir genä-
hert

cos
(
n⃗0, e⃗r

)
2 −→ cosϑ = z

r
.

125



Und weil das Flächenintegral über die Apertur Σ und somit über ξ und η läuft, ist das
Fresnel-Kirchhoff’sche Beugungsintegral mit diesen „Anpassungen“

E(x, y, z) = 1
iλ

∫
Σ

∫
u(ξ, η) z

r

eikr

r
dξ dη .

13.1 Fresnel-Näherung

Jetzt erfolgt eine wichtige Näherung, die Näherung von r im Nenner :

z ≫ laterale Abmessungen ξ, η, x, y ⇒ Σ und ϑ vergleichsweise klein ⇒

 r ≈ z ,
z

r
≈ 1 .

Damit erhält das Fresnel-Kirchhoff’sche Beugungsintegral für unsere Anwendung die einfache
Form

E(x, y, z) = 1
iλ · z

∫
Σ

∫
u(ξ, η) eikr(ξ,η) dξ dη . (119)

Im Exponenten von eikr(ξ,η) durften wir r nicht einfach durch z ersetzen, weil die Wellenzahl k
allgemein groß ist im Vergleich zu r und deshalb kleine Änderungen von r große Veränderungen
des Exponenten bewirken:

k = 2π
λ

mit λ ≈ 1
2 ·10−6 m ⇒ k ≈ 105 m−1 .

Wenn wir r im Exponenten durch z nähern wollen, dann mit Hilfe der Taylorentwicklung.
Wir drücken also zunächst r in den Koordinaten ξ, η, x, y, z aus:

r =
√
z2 + (ξ − x)2 + (η − y)2 = z

√
1 +

(
ξ − x
z

)2
+
(
η − y
z

)2
= z ·

√
1 + q

mit

q =
(
ξ − x
z

)2
+
(
η − y
z

)2
= (ξ − x)2 + (η − y)2

z2 . (120)

Wegen

z ≫ laterale Abmessungen von ξ, η, x, y ⇒ 0 <
(

ξ−x
z

)2
+
(η−y

z

)2 = q ≪ 1

entwickeln wir
f(q) =

√
1 + q = (1 + q)

1
2

für kleine q bzw. an der Stelle q = 0.

Nebenrechnung: Taylorentwicklung bis zur 2. Ordnung von f(q) = (1 + q) 1
2 an der Stelle q = 0.

f(q) = f(q)
∣∣∣
q=0

+ f ′(q)
∣∣∣
q=0

· q + 1
2 · f ′′(q)

∣∣∣
q=0

· q2 + · · ·

= (1 + q)
1
2

∣∣∣∣
q=0

+ 1
2 (1 + q)− 1

2

∣∣∣∣
q=0

· q + 1
2 ·
(

−1
2

)
1
2 (1 + q)− 3

2

∣∣∣∣
q=0

· q2 ± · · · ,
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f(q) = 1 + 1
2 q − 1

8 q
2 ± · · · .

Wir vernachlässigen im Folgenden die Entwicklungsglieder ab der 2. Ordnung und verwenden
folglich im Exponenten von eikr die Näherung

r ≈ z ·
[
1 + 1

2 q
]
⇒ (121)

r ≈ z ·

[
1 + 1

2

(
ξ − x
z

)2
+ 1

2

(
η − y
z

)2
]

= z + (ξ − x)2

2z + (η − y)2

2z .

Das Fresnel-Kirchhoff’sche Beugungsintegral (119) ist damit

E(x, y, z) = 1
iλ · z

∫
Σ

∫
u(ξ, η) eik

[
z + (ξ−x)2/2z + (η−y)2/2z

]
dξ dη

= eikz

iλ · z

∫
Σ

∫
u(ξ, η) eik

[
(ξ−x)2/2z + (η−y)2/2z

]
dξ dη

und mit ik · 1
2z = i 2π

λ ·
1
2z = iπ

λ z

E(x, y, z) = eikz

iλz

∫
Σ

∫
u(ξ, η) e

iπ
λz

[
(ξ−x)2 + (η−y)2

]
dξ dη .

Quadrieren der Binome im Exponenten, also
iπ
λz

[
(ξ − x)2 + (η − y)2] = iπ

λz

[
ξ2 − 2ξx+ x2 + η2 − 2ηy + y2]

= iπ
λz

(
ξ2 + η2) + iπ

λz

(
x2 + y2) − i · 2π

z · λ
(
xξ + yη

)
,

liefert schließlich mit 2π/λ = k

E(x, y, z) = eikz

iλz

∫
Σ

∫
u(ξ, η) e

iπ
λz

(ξ2+η2) + iπ
λz

(x2+y2) − ik
z

(xξ+yη) dξ dη

und damit die Fresnel-Näherung

E(x, y, z) = eikz

iλz · e
iπ
λz

(x2+y2)
∫
Σ

∫
u(ξ, η) · e− ik

z
(xξ+yη) · e

iπ
λz

(ξ2+η2) dξ dη . (122)

Zur Bedeutung der Terme1 in (122):

eikz

iλz ≡ const Intensitätfaktor mit Phasenkonstante 1
i = −i = e− i π

2 ,

e
iπ
λz

(x2+y2) = g(x, y, z) Phasenfaktor ,

e
iπ
λz

(ξ2+η2) = f(ξ, η, z) Chirp-Funktion, engl. to chirp – zwitschern, zirpen,
wird in der Fraunhofer-Näherung vernachlässigt .

1Verallgemeinert dargestellt ist die Chirp-Funktion f(x) = eiπκx2 .
Damit sind hier x = ξ bzw. x = η und κ = 1

λz
. Die Chirp-Funktion ist eine reine Phasenfunktion mit

konstantem Betrag |f(x)| ≡ 1.
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Fourier-Darstellung von (122) mit

x

λ z
= µ ,

y

λ z
= ν ,

eikz

λz
· g(x, y, z) = eikz

λz
· e

iπ
λz

(x2+y2) = eikz

λz
· eiπλz(µ2+ν2) = ψ(µ, ν, z) :

E(µ, ν, z) = 1
i ψ(µ, ν, z)

∫∫
u(ξ, η) · f(ξ, η, z) · ei2π (µ ξ + ν η) dξ dη

= 1
i ψ(µ, ν, z) · F

{
u(ξ, η) · chirp(ξ, η)

}
E(µ, ν, z) = 1

i ψ(µ, ν, z) · F
{
u(ξ, η)

}
⊗ F

{
chirp(ξ, η)

}
.

13.2 Bedingung für die Fresnel-Näherung

Mit (120) und (121) verwenden wir in der Fresnel-Näherung

kr ≈ kz ·
[
1 + 1

2 q
]

= kz ·
[
1 + 1

2
(ξ − x)2 + (η − y)2

z2

]
(123)

unter Vernachlässigung der Entwicklungsglieder ab der 2. Ordnung, d. h. unter der Bedingung

kz · 1
8 q

2 = kz · 1
8

[
(ξ − x)2 + (η − y)2

z2

]2 !
≪ 1 .

Ermitteln wir also die Werte von z, welche diese Bedingung erfüllen:

1 ≫ 2π
λ
z · 1

8

[
(ξ − x)2 + (η − y)2

]2

z4 = π

4λ

[
(ξ − x)2 + (η − y)2

]2

z3 ⇔

Fresnel-Bedingung z ≫ 3

√
π

4λ

[
(ξ − x)2 + (η − y)2

]2
.

Das Fresnel-Gebiet oder Nahfeld erstreckt sich folglich über den z-Bereich, der die Fresnel-
Bedingung erfüllt, und geht dann bei sehr großen z über in das Fernfeld.

Beispiel : (ξ − x) = (η − y) = 1 cm = 10−2 m , λ = 500 nm = 5 · 10−7 m ,

z ≫
3

√
π ·
[

(10−2)2 + (10−2)2
]2

m4

4 · 5 ·10−7 m = 3
√

π · 4 · 10−8 m4

20 · 10−7 m = 3
√

π
50 m3 ,

z ≫ 0, 40 m = 40 cm .

13.3 Fraunhofer-Näherung

Ausgehend von der Fresnel-Näherung (122) vernachlässigen wir bei der Fraunhofer-Näherung
auch noch den bezüglich ξ und η quadratischen Term im Exponenten, d. h. die Chirp-Funktion
e

iπ
λz

(ξ2+η2) wird gleich 1 gesetzt. So erhalten wir die
Fraunhofer-Näherung

E(x, y, z) = eikz

iλz · e
iπ
λz

(x2+y2)
∫
Σ

∫
u(ξ, η) · e− ik

z
(x ξ + y η) dξ dη . (124)
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Fourier-Darstellung von (124) mit

x

λ z
= µ ,

y

λ z
= ν ,

eikz

λz
· g(x, y, z) = eikz

λz
· e

iπ
λz

(x2+y2) = eikz

λz
· eiπλz(µ2+ν2) = ψ(µ, ν, z) :

E(µ, ν, z) = 1
i ψ(µ, ν, z)

∫∫
u(ξ, η) · ei2π (µ ξ + ν η) dξ dη

E(µ, ν, z) = 1
i ψ(µ, ν, z) · F

{
u(ξ, η)

}
.

13.4 Bedingung für die Fraunhofer-Näherung

Ausgehend von (123), d. h. von kr in Fresnel-Näherung gemäß

kr ≈ kz ·
[
1 + 1

2 q
]

= kz ·
[
1 + 1

2
(ξ − x)2 + (η − y)2

z2

]
,

≈ kz ·
[
1 + 1

2
ξ2 − 2ξx+ x2 + η2 − 2ηy + y2

z2

]
,

kr ≈ kz + k
x2 + y2

2z − k
ξx+ ηy

z
+ k

ξ2 + η2

2z︸ ︷︷ ︸ ,
wird in Fraunhofer-Näherung der bezüglich ξ und η quadratische (unterklammerte) Term
vernachlässigt, d. h.

k
ξ2 + η2

2z → 0 .

Ermitteln wir also die Werte von z, welche diese Bedingung erfüllen:

1
!
≫ k

ξ2 + η2

2z = π

λ

ξ2 + η2

z
⇔

Fraunhofer-Bedingung z ≫ π

λ

(
ξ2 + η2) .

Beispiel : (ξ − x) = (η − y) = 1 cm = 10−2 m , λ = 500 nm = 5 · 10−7 m ,

z ≫ π ·
[

(10−2)2 + (10−2)2
]

m2

5 · 10−7 m = π · 2 · 10−4 m2

5 · 10−7 m ,

z ≫ 1, 257 · 103 m = 1257 m .

Wie man sieht, beginnt das Fraunhofer-Gebiet oder Fernfeld erst bei viel größeren Abständen
z von der Apertur als das Nahfeld.
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14 Fraunhofer-Beugung und Auflösungsvermögen
Nach Eugene Hecht, Optik, Oldenbourg-Verlag, München, Wien, 4. Auflage, 2002, Abschnitt 10.2.5 Beugung
an einer kreisrunden Öffnung und Abschnitt 10.2.6 Das Auflösungsvermögen abbildender Systeme, Seite 752
bis Seite 762.

Weil die optischen Linsen und folglich die Öffnungen der meisten optischen Instrumente
kreisrund sind, werden wir in diesem Abschnitt das Auflösungsvermögen optischer Instrumente
mit kreisrunder Öffnung berechnen. Grundlage unserer Überlegungen ist neben der Abbildung
14, bei der man sich die Linse L2 in der Öffnungsebene Σ positioniert vorstellen sollte,
insbesondere die folgende Abbildung 29:

Abb. 29 Zur Fraunhofer-Beugung an einer kreisrunden Öffnung bzw. Apertur Σ mit dem Durchmesser
D = 2 · a.

Eine ebene, monochromatische Welle treffe von links so auf die Öffnung Σ, dass ihr
Wellenvektor k⃗ in Richtung der z-Achse verläuft.

„ Von der Lichtwelle, die auf Σ trifft, wird auf jeden Fall nur ein kreisförmiger
Ausschnitt verwendet – jener, der sich durch die Linse L2 ausbreitet –, um in
der Brennebene das Bild zu erzeugen. Nichts anderes passiert offensichtlich im
Auge, einem Teleskop, Mikroskop oder einer Kameraoptik. Das Bild einer fernen
Punktquelle, erzeugt mit einer ideal aberrationsfreien Sammellinse, ist daher nie
ein Punkt, sondern stets eine Art Beugungsbild. Da wir immer nur einen Teil der
auftreffenden Wellenfront verwenden, können wir nicht erwarten, ein ideales Bild
zu erhalten. “1

Die Öffnung sei gleichmäßig ausgeleuchtet, d. h., für die optische Feldstärke in der Ebene Σ
gelte

u(ξ, η) ≡ const .
1Zitiert aus Eugene Hecht, Optik, Oldenbourg-Verlag, München, Wien, 4. Auflage, 2002, Seite 752.

130



Wir gehen aus von der im Abschnitt 12.6 hergeleiteten Formel (118)

Ep = − i ϵ0
λ

K

R ·R0
eik(R+R0)

∫
Öffnung

e− ik
[(

x
R

+ x0
R0

)
ξ +
(

y
R

+ y0
R0

)
η
]
· dS

= 1
iλ ·

ϵ0eikR0

R0
·K · eikR

R

∫
Öffnung

e− ik
[(

x
R

+ x0
R0

)
ξ +
(

y
R

+ y0
R0

)
η
]
· dS (125)

zur Beschreibung der Fraunhofer-Beugung, müssen diese aber an die hier vorliegenden
speziellen Verhältnisse anpassen. Weil wir nur jene gebeugten Strahlen berücksichtigen
wollen, die nur gering von der Richtung parallel zur z-Achse abweichen, können wir K = 1
setzen. Bei einer ebenen einfallenden Welle gilt R0 →∞, sodass die Quotienten x0

R0
und y0

R0
im Exponenten unter dem Integral verschwinden. Der Term

ϵ0eikR0

R0

im Vorfaktor beschreibt die Feldstärke in der Öffnung für den Fall einer Kugelwelle, die ihre
Punktquelle im endlichen Abstand R0 vor der Öffnung besitzt. Da wir jetzt aber von einer
einfallenden ebenen Welle ausgehen, können wir diesen Term durch const ≡ u ersetzen. Und
weil der Zeitanteil e−iωt für unsere Betrachtungen nicht relevant ist, vernachlässigen wir ihn
im Folgenden wieder. Damit erhält (125) die Form

E(x, y, z) = 1
iλ · u︸ ︷︷ ︸

ϵA ≡ const

· e
ikR

R

∫
Öffnung

e− ik
[

x
R

ξ + y
R

η
]
· dS .

Aus Bequemlichkeit fassen wir die beiden konstanten Vorfaktoren 1
iλ und u zu ϵA zusammen,

sodass kurz

E(x, y, z) = ϵA eikR

R

∫
Öffnung

e− i k
R

(ξ x + η y) · dS

resultiert. Weil die einfallende ebene Welle senkrecht auf die kreisrunde Öffnung Σ trifft,
handelt es sich hier um ein axialsymmetrisches Problem (bezüglich der z-Achse). Es ist
deshalb sinnvoll, auf Σ und der Beobachtungsebene σ (ebene) Polarkoordinaten einzuführen:

Σ : ξ = ϱ · cosα , η = ϱ · sinα ,
σ : x = d · cosβ , y = d · sin β ,

dS = dξ dη = ϱdϱ dα .
Mit dem Additionstheorem

cosα · cosβ ± sinα · sin β = cos(α∓ β)

ergibt das

ξ x+ η y = ϱ cosα · d cosβ + ϱ sinα · d sin β = ϱ d · cos(α− β)

und damit schließlich das Flächenintegral über die Öffnung Σ in (ebenen) Polarkoordinaten:

E(d, β, z) = ϵA eikR

R

a∫
ϱ=0

2π∫
α=0

e− i k
R

ϱ d · cos(α−β) · ϱ dϱ dα .
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E ist aber wegen der Axialsymmetrie unabhängig von β, d. h., für jeden festen Radius d besitzt
E unabhängig von β stets den gleichen Wert und erzeugt somit in der Beobachtungsebene ein
um die z-Achse kreisförmig angeordnetes Beugungsmuster. Wir können deshalb vereinfachend
und o.B.d.A. β = 0 setzen:

E(d, β = 0, z) = ϵA eikR

R

a∫
ϱ=0

2π∫
α=0

e− i k ϱ d
R

· cos α · ϱ dϱ dα . (126)

Die Berechnung dieses Flächenintegrals erfordert den Umgang mit der Bessel-Funktion. Wir
lösen es deshalb in der folgenden Nebenrechnung.

Bessel-Funktion

Die Integraldarstellung der Bessel-Funktion J erster Gattung und der Ordnung n (n ganzzahlig, d. h.
n ∈ Z) ist

Jn(w) = 1
2π · in

2π∫
0

ei (n·α + w·cos α) dα

mit dem Argument w und der Rekursionsformel

d
dw

[
w · J1(w)

]
= w · J0(w) ,

d
dw

[
wn · Jn(w)

]
= wn · Jn−1(w)

⇒ wn · Jn(w) =
w∫

0

wn · Jn−1(w) dw ⇒

Jn(w) = 1
wn

w∫
0

wn · Jn−1(w) dw .

Das heißt J1(w) = 1
w

w∫
0

w · J0(w) dw .

Weiterhin gilt

J0(w) = 1
2π

2π∫
0

ei w·cos α dα , J0(0) = 1 ,

J1(w) = 1
2π i

2π∫
0

ei (α + w·cos α) dα , J1(0) = 0 .

Nullstellen von J1(w) , also

J1(w) = 0 bei


w0 = 0
w1 = 3, 832
w2 = 7, 016

...

Nebenrechnung: Lösung des Flächenintegrals (126)

E(d, β = 0, z) = ϵA eikR

R

a∫
ϱ=0

2π∫
α=0

e− i k ϱ d
R

· cos α · ϱ dϱdα .
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Wir verwenden die Substitution

− kϱd

R
= w ⇔ ϱ = − R

kd
w ⇒ dϱ = − R

kd
dw

mit den daraus folgenden Integralgrenzen

ϱ = 0 ⇒ w = 0 und ϱ = a ⇒ w = − kad

R

und lassen den Vorfaktor des Flächenintegrals zunächst unberücksichtigt. Der Winkelanteil des Integrals ist
damit

2π∫
0

ei (− kϱd/R)· cos α dα =
2π∫

0

ei w·cos α dα = 2π

 1
2π

2π∫
0

ei w·cos α dα


= 2π · J0(w) .

Vom Flächenintegral verbleibt folglich das Integral längs des Radius ϱ :
a∫

ϱ=0

2π · J0(w) · ϱ · dϱ = 2π
−kad/R∫
w=0

J0(w) ·
(

− R

kd
w

)
·
(

− R

kd
dw
)

= 2π
(
R

kd

)2
−kad/R∫
w=0

J0(w) · w · dw

= 2π
(
R

kd

)2 [
w · J1(w)

]−kad/R

w=0
.

Da J1(w) eine ungerade Funktion ist, gilt

w = − kad

R
⇒ J1(− kad/R) = −J1(kad/R) ⇒

[
w · J1(w)

]∣∣∣∣
w=− kad/R

= kad

R
J1(kad/R) ,

sodass
a∫

ϱ=0

2π · J0(w) · ϱ · dϱ = 2π
(
R

kd

)2

· kad
R

J1(kad/R) ,

= 2πa2 · R

kad
· J1(kad/R) .

Mit dem Flächeninhalt
πa2 = A

der Öffnung Σ ist dann das Flächenintegral insgesamt, also auch mit dem Vorfaktor,

ϵA eikR

R

a∫
ϱ=0

2π∫
α=0

e− i k ϱ d
R

· cos α · ϱ dϱdα = ϵA eikR

R
· 2 ·A · R

kad
· J1(kad/R) . (127)

Zur besseren Übersicht in den folgenden Rechnungen ordnen wir die Terme in (127) um und
schreiben für die Lösung des Flächenintegrals (126) schließlich

E(d, z) = 2 ϵA
R

eikR ·A · J1(kad/R)
kad/R

.

Wegen der Achsensymmetrie des Beugungsmusters, das im Fall der kreisrunden Öffnung auch
als Airy-Muster2 bezeichnet wird, ist die Bestrahlungsstärke bzw. der zeitliche Mittelwert
der Intensität in der Beobachtungsebene auf folgende Weise abhängig vom Radius d :

I(d) =
〈(

Re{E}
)2
〉

t
= 1

2 · E · E
∗ = 1

2 ·
4 ϵ2A A2

R2

[
J1(kad/R)
kad/R

]2
,

2Sir George Bidell Airy (1801–1892): königlich-englischer Astronom.
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I(d) = 2 ϵ2A A2

R2

[
J1(kad/R)
kad/R

]2
. (128)

Daraus und mit dem Ergebnis (130) aus der folgenden Nebenrechnung erhalten wir
die Bestrahlungsstärke im Zentrum des Beugungsmusters, also für d = 0 ⇒ w = 0,
wie folgt:

Nebenrechnung
J1(0)

0 = 0
0 nicht definiert ⇒ mit L’Hospital :

lim
w→0

J1(w)
w

= lim
w→0

d
dw

J1(w)
d

dw
w

= lim
w→0

d
dw

J1(w)
1 ,

lim
w→0

J1(w)
w

= lim
w→0

d
dw J1(w) . (129)

d
dw

[
w · J1(w)

]
= w · J0(w) = w · d

dw J1(w) + J1(w)

⇔ J0(w) = d
dw J1(w) + J1(w)

w

⇒ J0(0) = 1 = lim
w→0

d
dw J1(w) + lim

w→0

J1(w)
w

(129)=⇒ 1 = 2 · lim
w→0

d
dw J1(w) ⇔

lim
w→0

d
dw J1(w) = 1

2 . (130)

I(d = 0) = I0 = 2 ϵ2A A2

R2 · lim
d→0

[
J1(kad/R)
kad/R

]2 (130)= 2 ϵ2A A2

R2 ·
(

1
2

)2
,

I0 = ϵ2A A2

2R2 .

Für einige praktische Anwendungen ist es nützlich, wenn die Bestrahlungsstärke des Beu-
gungsmusters als „Vielfaches“ von I0 und als Funktion des Winkels ϑ (siehe Abbildung 29)
angegeben wird. Dazu klammern wir I0 aus (128) aus und führen die Substitution

d

R
= sinϑ

durch:

I(d) = ϵ2A A2

2R2 · 4
[
J1(kad/R)
kad/R

]2
= I0 ·

[
2 ·

J1
(
ka d

R

)
ka d

R

]2

,

I(ϑ) = I0 ·
[

2 · J1(ka sinϑ)
ka sinϑ

]2
. (131)

Das Airy-Muster zeichnet sich durch einen kreisrunden Bereich hoher Intensität um das
(zentrale) Hauptmaximum aus. Dieser Bereich ist die Airy-Scheibe und wird begrenzt durch
das erste Minimum im Airy-Muster.
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14.1 Bestimmung des Auflösungsvermögens bei kreisrunder Öffnung

Eine allgemeine Übersicht zur Thematik „Auflösungsvermögen“ findet man im Internet unter:
Spektrum.de – Auflösungsvermögen – Lexikon der Optik

Die Begriffe Auflösungsvermögen und Auflösung werden synonym verwendet. Bei der Be-
stimmung des Auflösungsvermögens optischer Instrumente stützt man sich meistens auf das
Rayleigh-Kriterium3 (1874):

Zwei Punktquellen werden dann gerade noch getrennt wahrgenommen („aufge-
löst“), wenn das Hauptmaximum des Fraunhofer-Beugungsmusters der einen
Quelle und das erste Minimum des Fraunhofer-Beugungsmusters der anderen
Quelle zusammenfallen. Man spricht in diesem Zusammenhang folglich vom

Doppelpunktauflösungsvermögen.

Der sich daraus ergebende auflösbare Minimal- oder Mindestabstand der beiden Quellen
entspricht bei kreisrunder Apertur dem Abstand des ersten Minimums vom Zentrum des
Airy-Musters, also dem Radius der Airy-Scheibe. Es ist meistens sinnvoll, nicht mit dem
Abstand bzw. der Strecke zwischen den Quellen zu rechnen, sondern mit dem Winkel θ, unter
dem die beiden Punktquellen beobachtet werden.

Wir brauchen in unserem Fall folglich nur den zum ersten Minimum von I(ϑ) gehörenden
Winkel ϑ1 zu berechnen. Dieses Minimum befindet sich dort, wo der Zähler im Klammerterm
von (131) verschwindet bzw. wo J1(ka sinϑ) = J1(w) seine erste Nullstelle hat. Und das ist
bei w1 = 3, 832 der Fall:

J1(ka sinϑ1) = J1(w1) = 0 ⇔

w1 = 3, 832 = ka sinϑ1 ⇔ sinϑ1 = 3, 382 · 1
ka

= 3, 382 · λ

2πa = 3, 382
π
· λ2a .

Mit dem Durchmesser D = 2a der kreisrunden Apertur und unter Berücksichtigung der
Tatsache, dass der Winkel ϑ1 zwischen den Zentralstrahlen4 zweier verschiedener Punktquellen
liegt und wir ihn deshalb mit θmin bezeichnen, erhalten wir daraus schließlich

sin θmin = 1, 22 · λ
D

.

Ist der Abstand R (siehe Abbildung 29) bekannt, kann man den (gerade noch auflösbaren)
Mindestabstand dmin in der Beobachtungsebene berechnen mit Hilfe von

sin θmin = dmin
R

= 1, 22 · λ
D

⇔

dmin = 1, 22 · Rλ
D

. (132)

• sin θmin ist die Winkelauflösungsgrenze.
• θmin ist der minimale Winkelabstand.
• dmin ist der bildseitige (auflösbare) Mindestabstand.

3John William Strutt „Lord Rayleigh“ (1842–1919): englischer Physiker und Nobelpreisträger.
4Als Zentralstrahl bezeichnen wir hier den Strahl von der Punktquelle zum (zentralen) Hauptmaximum des

Airy-Musters.
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Beispiel aus der Fotooptik

Das Objektiv sei auf die Beobachtungsebene bzw. Bildebene fokussiert. Bei einer Land-
schaftsaufnahme ist die Gegenstandsweite a sehr groß bzw. geht gegen Unendlich, sodass
dann die Bildweite b nur vernachlässigbar größer ist als die Objektivbrennweite f . Unter
Berücksichtigung von (132) können wir also von R = b = f ausgehen und erhalten für den
bildseitigen (auflösbaren) Mindestabstand

dmin = 1, 22 · f λ
D

.

Im Fall von Nahaufnahmen ist die Bildweite deutlich größer als die Objektivbrennweite,
sodass wir dann b statt f verwenden müssten, um ein Ergebnis mit hinreichender Genauigkeit
zu erhalten.

Bei der Durchlichtmikroskopie ist die Gegenstandsweite sogar nur geringfügig größer als
die Objektivbrennweite und die Bildweite ist sehr viel größer als die Objektivbrennweite.
Außerdem interessiert uns in der Mikroskopie nicht der bildseitige sondern der objektseitige
Mindestabstand, d. h. der gerade noch auflösbare Abstand zwischen zwei Objektpunkten.
Weil also bei der Mikroskopie die Verhältnisse teilweise umgekehrt sind, werden wir das
Auflösungsvermögen des Mikroskops gesondert betrachten. Allgemein und vereinfacht gilt
die folgende Übersichtsdarstellung, in der die bildseitigen Größen mit einem Strich indiziert
sind:

• Das Doppelpunktauflösungsvermögen entspricht dem bildseitigen Mindestabstand,
d. h. dem kleinsten erfassbaren „Bildpunktabstand“

∆y′
min = γ · λ0

n′ · sinα′ , 0, 47 ≤ γ ≤ 1, 22 .

• Das Auflösungsvermögen des Mikroskops entspricht dem objektseitigen Mindestab-
stand, d. h. dem kleinsten erfassbaren Objektpunktabstand

∆ymin = γ · λ0
n · sinα , 0, 47 ≤ γ ≤ 1, 22 .

λ0 ist die Vakuumwellenlänge, n · sinα ist die objektseitige und n′ · sinα′ die bildseitige
numerische Apertur NA . Der Faktor γ = 0, 47 resultiert aus dem Sparrow-Kriterium, auf
das wir nicht eingehen werden.
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15 Das laterale Auflösungsvermögen des Mikroskops
Quellen und Literaturhinweise
• Rudolf Gross, WMI – Lecture Notes – Kapitel 7, Abbildungstheorie,

https://www.wmi.badw.de/teaching/Lecturenotes/Physik3/Gross_Physik_III_Kap_7.pdf
• Friedrich-Schiller-Universität Jena, Physikalisches Grundpraktikum, 404 – Mikroskop,

www.uni-jena.de/pafmedia/Studium/Grundpraktikum/V_404.pdf

In der Mikroskopie ist der objektseitige Öffnungswinkel ωOb des Objektivs von großer
Bedeutung (siehe Abbildung 34). Er ist wie folgt definiert:

ωOb := 2 · arctan
(

D/2
a

)
mit der Gegenstandsweite a und dem Objektivdurchmesser D. Und es gilt folglich:

halber Öffnungswinkel α = ωOb
2 = arctan

(
D/2

a

)
.

Für den (gerade noch auflösbaren) Mindestabstand zwischen zwei Objektpunkten oder zwei
benachbarten Gitterstrichen schreiben wir im Rahmen der Durchlichtmikroskopie einheitlich
gmin.

15.1 Laterales Auflösungsvermögen des Mikroskops mit
Rayleigh-Kriterium

Nach Wolfgang Demtröder, Springer-Lehrbuch Experimentalphysik 2, Elektrizität und Optik, 3. Auflage,
Springer-Verlag, Berlin, Heidelberg, New York, 2004, Abschnitt 11.3.3 Auflösungsvermögen des Mikroskops,
Seite 353 und Seite 354.

Das Auflösungsvermögen mit dem Rayleigh-Kriterium ist ein sog. Doppelpunktauflösungsver-
mögen und bezieht sich auf selbstleuchtende Objekte wie z. B. bei der Fluoreszenzmikroskopie
und auf inkohärent durchleuchtete Objekte. Bei einzelnen inkohärenten Punktquellen sind
die Intensitäten der jeweiligen Beugungsmuster dieser Punktquellen zu addieren, um das
Bild zu erhalten:

I(θ) = I1(θ) + I2(θ) = A2
1(θ) +A2

2(θ) .

Inkohärente Beleuchtung führt allgemein zu einer besseren Auflösung als kohärente Beleuch-
tung.

Der Abstand Objektebene – Objektiv ist die Gegenstandsweite a, der Abstand
Objektivöffnung – Zwischenbildebene die Bildweite b.

Abb. 30 Zum Auflösungsvermögen des Mikroskops mit dem Rayleigh-Kriterium.

Von zwei beleuchteten Objektpunkten O0 und O1 (siehe Abbildung 30) verlaufen die
„Zentralstrahlen“ mit dem Winkel θ zueinander durch das Öffnungszentrum des Objektivs
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zur Beobachtungs- bzw. Zwischenbildebene. Dort erzeugen sie nicht ihren (geometrischen)
Bildpunkt sondern jeweils ihr Airy-Scheibchen, sodass wir mit R = b die Formel (132) zur
Berechnung des bildseitigen (auflösbaren) Mindestabstands dmin heranziehen können:

dmin = 1, 22 · b λ
D

. (133)

Diesem bildseitigen Mindestabstand dmin entspricht ein objektseitiger (gerade noch auflösba-
rer) Mindestabstand gmin nach dem Strahlensatz wie folgt:

gmin
a

= dmin
b

= 1, 22 · λ
D

⇔ gmin = 1, 22 · a · λ
D
. (134)

Weil allgemein in der Durchlichtmikroskopie die Objektebene praktisch in der vorderen
Brennebene des Objektivs liegt, setzen wir a = f und erhalten aus (134) schließlich

gmin = 1, 22 · f λ
D

.

Definitionsgemäß ist damit das Auflösungsvermögen A des Mikroskops

A = 1
gmin

= 0, 82 · D
f λ

.

Der Öffnungswinkel 2α eines Objektivs wird manchmal angegeben mittels der Näherung

2 · sinα ≈ D

f
.

Allerdings ist diese Näherung nur für Winkel α bis ca. 30◦ eine brauchbare Näherung.
Für weiter anwachsende Winkel α wird diese Näherung sehr schnell unbrauchbar. Dessen
ungeachtet wird sie verwendet, um die Abhängigkeit des Auflösungsvermögens von der
numerischen Apertur NA = n · sinα des Objektivs darzustellen. Setzen wir diese Näherung
nämlich in (15.1) ein, so erhalten wir

gmin ≈ 1, 22 · λ

2 · sinα = 1, 22 · λ0
2 · n · sinα ,

gmin ≈ 0, 61 · λ0
n · sinα = 0, 61 · λ0

NA
.
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15.2 Laterales Auflösungsvermögen des Mikroskops mit Abbe-Kriterium

Das Abbe-Kriterium bezieht sich auf die Durchlichtmikroskopie mit kohärent beleuchteten
Objekten.
Bei kohärenten Quellen sind die Einzelamplituden zu addieren und die Amplitudensumme
anschließend zu quadrieren. Es resultiert das Intensitätsmuster als Bild:

I(θ) =
[
A1(θ) +A2(θ)

]2
.

1873 beantwortete Ernst Abbe1 die Frage, bis zu welcher kleinsten Gitterkonstante gmin mit
einem Mikroskop die Abbildung eines Strichgitters möglich ist. Er fand dabei das nach ihm
benannte Kriterium für das Auflösungsvermögen des Mikroskops, das Abbe-Kriterium:

Um eine mikroskopische Abbildung eines Objekts zu erhalten bzw. ein Objekt
aufzulösen, muss neben dem Beugungsmaximum 0. Ordnung mindestens ein
Fraunhofer-Beugungsmaximum 1. Ordnung (+1. Ordnung oder -1. Ordnung)
in das Objektiv fallen (siehe Abbildung 31 und Abbildung 34). Man spricht in
diesem Zusammenhang folglich vom

Gitterauflösungsvermögen.

Abb. 31 Zum Abbe-Kriterium. Mit
kleiner werdender Gitterkonstante g
nimmt die Spreizung der Beugungs-
ordnungen zu, sodass dann die 1. Beu-
gungsordnung nicht mehr in das Ob-
jektiv fällt.

Beim Fraunhofer-Beugungsspektrum des Strichgitters bezeichnet man die Hauptmaxima als
Beugungsmaxima m-ter Ordnung. Das Fraunhofer-Beugungsmaximum 0. Ordnung allein
liefert keine Bildinformation und somit auch keine Abbildung des Objekts. Durch jede
weitere höhere Beugungsordnung kommen Bildinformationen hinzu, sodass die Auflösung
bzw. die Bildschärfe zunimmt. Je größer der Öffnungswinkel 2α des Objektivs ist, desto mehr
Beugungsordnungen können vom Objektiv zum Aufbau des Bildes „herausgefiltert“ werden.
Wird jedoch nur die 0. Ordnung herausgefiltert, so entsteht in der hinteren Brennebene
(Fourier-Ebene) nur ein Punkt bzw. eine Linie des Fraunhofer-Beugungsspektrums, das
Beugungsmaximum 0. Ordnung, und in der Bildebene nur ein Lichtfleck gleichmäßiger
Helligkeit ohne weitere Bildinformationen.

Das Auflösungsvermögen des Mikroskops entspricht also der Gitterkonstante gmin, d. h. dem
Abstand zweier benachbarter Striche, bei dem gerade noch die 0. und die 1. Beugungsordnung
vom Objektiv durchgelassen werden. Bei weiterer Verringerung des Strichabstands (der
Gitterkonstante) g, wird das Spektrum der Beugungsordnungen räumlich weiter gespreizt,
sodass nur noch die 0. Ordnung in das Objektiv gelangt und somit ein Bildaufbau nicht
mehr möglich ist.

1Ernst Carl Abbe (1840–1905): deutscher Physiker, Optiker und Industrieller.
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15.2.1 Senkrecht einfallendes Licht

Wir betrachten zunächst den einfachen Fall, dass das Objekt (Strichgitter) mit senkrecht
einfallendem kohärenten Licht beleuchtet (durchleuchtet) wird (siehe Abbildung 32).

Abb. 32 Zum Auflösungsvermögen des Mikroskops nach dem Abbe-Kriterium. Eine ebene kohärente
Welle falle von links senkrecht auf das Strichgitter. Die Sammellinse generiert in ihrer hinteren Brennebene
aus dem am Gitter gebeugten Licht das Fraunhofer-Beugungsmuster und erzeugt schließlich in der Bildebene
das umgekehrte Bild des Strichgitters in einem bestimmten Abbildungsmaßstab.

Mit (72) und dem Gangunterschied ∆s zwischen den benachbarten Strahlenbündeln beim
Strichgitter hatten wir für die zugehörige Phasendifferenz

δ = k ·∆s = 2π
λ
· g sin θ︸ ︷︷ ︸

= ∆s

gefunden. Gemäß (73) gilt dann für die Hauptmaxima der Ordnung m beim Strichgitter

δm = 2π
λ
· g sin θm = m · 2π ⇔ g = m

λ

sin θm
⇒ g ∝ 1

sin θm
.

Nach dem Abbe-Kriterium, d. h. mit m = 1, und mit (140), also mit dem Zusammenhang
zwischen der Vakuumwellenlänge λ0 und der Wellenlänge im Medium mit dem Brechungsindex
n, ergibt dies

gmin = λ

sin θmin

(140)=⇒ gmin = λ0
n · sin θmin

. (135)

Durch den Objektivdurchmesser ist dessen Öffnungswinkel 2α vorgegeben. Und weil für
θ1 ≤ α die 1. Beugungsordnung in das Objektiv fallen kann, erhalten wir schließlich

gmin = λ0
n · sinα .
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Dass sich mit dem Größerwerden des Brechungsindex n das Auflösungsvermögen vergrößert
(Verkleinerung von gmin), sehen wir auch bei Betrachtung der Phasendifferenz

δm = m · 2π m=1=⇒ δ1 = 2π

für die 1. Beugungsordnung:

δ1 = 2π = 2π
λ
· g sin θ1 ⇔ sin θ1 = 1

g
· λ

=⇒ sin θ1 ∝ λ ,

λ= λ0
n=⇒ sin θ1 ∝

1
n
.

Damit wird deutlich, warum man bei Verwendung von Immersionsöl als Medium zwischen Ob-
jekt und Objektiv das Auflösungsvermögen und damit die förderliche Vergrößerung eines
Mikroskops erhöhen kann. Vergrößerungen durch ein Mikroskop mittels stark vergrößernder
Okulare über die förderliche Vergrößerung hinaus liefern keine zusätzlichen Bildinforma-
tionen bzw. keine neuen Objektdetails, weshalb man dann von leerer Vergrößerung
spricht. Während Luft nur einen Brechungsindex n ≈ n0 = 1 besitzt, hat Immersionsöl
einen Brechungsindex von n = 1, 5. Der gerade noch auflösbare Abstand zwischen zwei
Gitterstrichen bzw. zwei Punktquellen wird bei Verwendung von Immersionsöl mit dem
Faktor 1

n = 1
1,5 = 2/3 verringert, d. h. um 1/3 verkleinert.
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15.2.2 Schräg einfallendes Licht

Abb. 33 Zur „schiefen Beleuchtung“ des Strichgitters. Der Index ko steht für kondensorseitig und der
Index 1 für objektivseitig und/oder 1. Beugungsordnung. Ein vom Kondensor ausgehendes kohärentes
Lichtbündel (einfallender Strahl) fällt unter dem Winkel θko auf die Beugungsebene (Strichgitter). Der
einfallende Strahl und die 0. Begungsordnung verlaufen in der gleichen Richtung. Im Folgenden ist zu
berücksichtigen, dass entsprechend dieser Abbildung sin θko < 0 und sin θ1 > 0 gilt.

Man kann sich überlegen, dass für den Gangunterschied zwischen der 0. und der +1. Beu-
gungsordnung

∆s = ∆s1 −∆sko = g sin θ1 − g sin θko für θko < 0 , θ1 > 0 (136)

gilt, und nicht ∆s = g · sin
(
|θko|+ |θ1|

)
, weil wegen des schrägen Einfalls eines kohärenten

Lichtbündels am Gitter bereits der Gangunterschied ∆sko (innerhalb dieses Bündels) be-
steht. Durch die Beugung dieses einfallenden Lichtbündels am Strichgitter entsteht dann
der zusätzliche Gangunterschied ∆s1. Unter Berücksichtigung von Abbildung 33 mit
sin(−θko) = − sin θko und im Hinblick auf die folgende Herleitung des Auflösungsvermögens
des Mikroskops schreiben wir für (136)

∆s = g · | sin θko|+ g · | sin θ1| .

Daraus resultiert dann die Phasendifferenz bei konstruktiver Interferenz in der 1. Beugungs-
ordnung entsprechend m = 1 und mit

λko = λ0
nko

, λ1 = λ = λ0
n

:

δ = 2π
λko

g | sin θko|+
2π
λ1

g | sin θ1|

= 2π
λ0

g nko| sin θko|+
2π
λ0

g n| sin θ1| ,

δ = 2π
λ0

g
(
nko| sin θko|+ n| sin θ1|

)
= m · 2π ,

δ(m=1) = 2π
λ0

g
(
nko| sin θko|+ n| sin θ1|

)
= 2π . (137)

Hierbei ist die Gitterkonstante g vorgegeben. Wenn wir aber g nicht kennen, dafür aber die
Winkel θko und θ1, welche die 1. Beugungsordnung liefern, so können wir die zugehörige
Gitterkonstante, also den Strichabstand g1 durch Äquivalenzumformung aus (137) ermitteln:

g1 = λ0
nko| sin θko|+ n| sin θ1|

. (138)
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Bei vorgegebenem Öffnungswinkel 2α des Objektivs lässt sich das Auflösungsvermögen des
Mikroskops durch „schiefe Beleuchtung“ oder genauer gesagt durch schiefe oder schräge
Durchleuchtung des Objekts vergrößern (siehe Abbildung 34).

Abb. 34 Zum Auflösungsvermögen des Mikroskops nach dem Abbe-Kriterium. Als Objekt dient hier ein
Strichgitter.
a Bei senkrechtem Lichteinfall bewirkt hier die vorgegebene Gitterkonstante g, dass sowohl die 0. und +1.
als auch die 0. und -1. Beugungsordnung gerade noch in das Objektiv fallen.
b “Schiefe Beleuchtung“ des Strichgitters führt hier dazu, dass die 0. und +1. Beugungsordnung auch bei
kleinerer Gitterkonstante g als in Abbildung a gerade noch in das Objektiv fallen.
c „Schiefe Beleuchtung“ durch einen Kondensor, der den gleichen Öffnungswinkel 2α wie das Objektiv
besitzt. Der Öffnungswinkel 2α ist hier gleich dem kleinsten Winkel θmin entsprechend der minimalen
Gitterkonstante g1 = gmin, die es ermöglicht, dass sowohl die 0. und +1. als auch die 0. und -1.
Beugungsordnung gerade noch in das Objektiv fallen. Infolge des schrägen Lichteinfalls ist gmin hier kleiner
als g in Abbildung a.

Das ist möglich, weil zur Bildentstehung neben der 0. Beugungsordnung nur mindestens eine
der 1. Beugungsordnungen (+1. oder -1. Ordnung) erforderlich ist. Ist der Öffnungswinkel
des Kondensors 2αko und gilt

| sin θko| = sinαko und | sin θ1| = sinα ,

so definiert (138) den gerade noch auflösbaren Abstand bzw. den Mindestabstand zwischen
benachbarten Gitterstrichen für den allgemeinen Fall, dass die Brechungsindizes und die
Öffnungswinkel kondensor- und objektivseitig verschieden sind:

gmin = λ0
nko| sin θko|+ n| sin θ1|

= λ0
nko sinαko + n sinα ,

gmin = λ0
NAKondesor +NAObjektiv

. (139)

Das Produkt aus halbem Öffnungswinkel von Kondensor bzw. Objektiv mit dem Brechungs-
index des jeweils umgebenden Mediums bezeichnet man als numerische Apertur NA des
Kondensors bzw. Objektivs.
Praktisch realisiert wird die „schiefe Beleuchtung“ im einfachsten Fall durch einen Kondensor,
der den gleichen Öffnungswinkel 2α wie das Objektiv besitzt (siehe Abbildung 34 c). Die
allgemeine Formel (139) vereinfacht sich dann wegen sinαko = sinα zu

gmin = λ0
(nko + n) · sinα .

Wenn das Medium kondensorseitig Luft gemäß nko = n = 1 ist, was fast immer der Fall ist,
erhalten wir

gmin = λ0
(1 + n) · sinα .
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Und wenn das Medium sowohl kondensor- als auch objektivseitig Luft ist, so resultiert
schließlich die oft für das maximal mögliche „Auflösungsvermögen“ des Mikroskops angegebene
einfache Formel

gmin = λ0
2 · sinα = 0, 5 · λ0

sinα .

Das laterale Auflösungsvermögen des Mikroskops mit dem Abbe-Kriterium bei „schiefer
Beleuchtung“ ist folglich fast identisch mit der

Grenzauflösung gmin = 0, 51 λ0
n · sinα ,

bei der sich die benachbarten „Bildmittelpunkte“ bzw. Mittelpunkte der Airy-Scheiben im
Abstand der Halbwertsbreite der zugehörigen Fraunhofer-Hauptmaxima befinden.

Auflösbare Mindestabstände gmin bei verschiedenen Kriterien:

• Rayleigh-Kriterium: gmin = 0, 61 · λ0
n · sinα ,

• Abbe-Kriterium bei senkrechter Beleuchtung: gmin = λ0
n · sinα ,

• Abbe-Kriterium bei „schiefer Beleuchtung“: gmin = λ0
nko · sinαko + n · sinα ,

für αko = α und nko = 1 : gmin = λ0
(1 + n) · sinα ,

für αko = α und nko = n = 1 : gmin = 0, 50 · λ0
sinα ,

• Grenzauflösung: gmin = 0, 51 · λ0
n · sinα .
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16 Zur Abbe’schen Abbildungstheorie
• Abbe’sche Sinusbedingung1

Tatsache ist, dass die Lichtgeschwindigkeit c vom Brechungsindex n des Ausbreitungs-
mediums abhängt gemäß

c = c0
n

mit der Vakuumlichgeschwindigkeit c0 .

Außerdem ist die Frequenz f des Lichts unabhängig vom Medium, sodass für den
Zusammenhang zwischen der Wellenlänge λ und dem Brechungsindex n des zugehörigen
Mediums folgendes gilt:

c = c0
n

= λ · f ⇔ c0 = nλ · f = λ0 · f ⇒

Vakuumwellenlänge λ0 = nλ ⇒ λ = λ0
n
∝ 1
n
. (140)

Mit der Herleitung der Abbe’schen Sinusbedingung wird die Frage beantwortet, unter
welcher Bedingung eine weitestgehend aplanatische Abbildung, d. h. eine Abbildung
ohne nennenswerte sphärische Aberration, mit einer Sammellinse möglich ist.

Abb. 35 Zur Abbe’schen Sinusbedingung. (Vergleiche mit den Abbildungen 15 und 16 im Abschnitt
11.2.1.)

Wie in der Abbildung 35 zu sehen ist, beleuchten wir eine Kreisblende, das Objekt A
in der Objektebene, mit einer sehr weit entfernten und sehr ausgedehnten Lichtquelle
und greifen zwei hinter der Kreisblende resultierende Parallelbündel mit ihren ebenen
Phasenflächen heraus. Das eine Bündel verlaufe senkrecht zur Kreisblende und somit
entlang der optischen Achse, das andere verlaufe schräg zur Kreisblende bzw. im Winkel
α zur optischen Achse. Mittels einer Sammellinse entsteht aus den beiden Lichtbündeln
in der Bildebene das umgekehrte Abbild B der Kreisblende im Abbildungsmaßstab

M = |B|
|A|

.

Das schräge Lichtbündel verläuft auf der Bildseite mit dem Winkel β zur optischen
Achse. Wenn wir jetzt die Strahlen vom Objekt zum Bild verfolgen, können wir unter

1Siehe Wolfgang Demtröder, Springer-Lehrbuch Experimentalphysik 2 – Elektrizität und Optik, Springer-
Verlag, Berlin, Heidelberg, New York, 2004, 3. Auflage, Abschnitt 9.5.7 Die aplanatische Abbildung, Seite 281
bis Seite 282.
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Berücksichtigung der Tatsachen, dass die hintere Brennebene der Sammellinse durch
F ′ gleichzeitig die Fraunhofer-Beugungsebene ist, folgendes feststellen:
Von Pfeilbasis zu Pfeilbasis entsteht (objektseitig) vor der Fraunhofer-Beugungsebene
durch Wegverlängerung der Gangunterschied

∆sa = |A| · sinα .

Von Pfeilspitze zu Pfeilspitze entsteht (bildseitig) hinter der Fraunhofer-Beugungsebene
durch Wegverlängerung der Gangunterschied

∆sb = |B| · sin β .

Die aus diesen Gangunterschieden resultierenden Phasendifferenzen

δ = k ·∆s = 2π
λ
·∆s (140)= 2π

λ0
n

·∆s = 2π
λ0
· n∆s

sind
δa = 2π

λ0
· na ∆sa und δb = 2π

λ0
· nb ∆sb .

Wenn wir bei vorgegebener Gegenstandsweite a dafür sorgen, dass diese beiden Pha-
sendifferenzen gleich sind, erhalten wir eine aplanatische Abbildung, weil dann die
Änderung der Phase im Strahlenverlauf Objektpfeil-Spitze zu Bildpfeil-Spitze gleich
der Änderung der Phase im Strahlenverlauf Objektpfeil-Basis zu Bildpfeil-Basis ist:

δa = δb ⇒ na ∆sa = nb ∆sb

na · |A| · sinα = nb · |B| · sin β ⇔

Abbe’sche Sinusbedingung na sinα
nb sin β = |B|

|A|
= M = const .
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17 Anhang
17.1 Hauptachsentransformation von Kegelschnitten zur Bestimmung der

Parameter von Ellipsen

Siehe dazu:
• Wikipedia, Suchbegriff Hauptachsentransformation.
• Friedrich W. Buckel, Internetbibliothek für Schulmathematik und Studium, 2022, Text Nr. 54303,

Suchbegriff mathe-cd Schräge Ellipsen Hauptachsentransformation .
• Suchbegriff 46 Eigenwerte und Eigenvektoren symmetrischer Matrizen,

https://resources.mpi-inf.mpg.de/departments/d1/teaching/ss10/MFI2/kap46.pdf

• mein Skript Mathematik – Einige ausgewählte Themen für das Physikstudium, Kapitel 13 Eigenwert-
gleichung einer 2-reihigen reellen Matrix – Verallgemeinerung für n-reihige Matrizen und Abschnitt
15.3 Diagonalisierung von Matrizen (Operatoren).

Kegelschnitte sind Kreise, Ellipsen, Parabeln und Hyperbeln. Unser Ziel ist es, im Allgemeinen zu zeigen, wie
man mit dem Verfahren der Hauptachsentransformation die Parameter von Kegelschnitten bestimmen kann,
die nicht in ihrer Normalform gegeben sind.

Die Lösungsmenge einer quadratischen Gleichung mit mehreren Unbekannten (Variablen) ist eine Punkt-
menge, die Quadrik (Plural: Quadriken). Im R2 bzw. in der Ebene, beispielsweise dargestellt durch ein
kartesisches (x, y)-Koordinatensystem, sind dies 2-dimensionale Quadriken, welche in der allgemeinen Form
durch die quadratische Gleichung

a x2 + b y2 + c xy + d x+ e y + f =
(
x y

)( a c/2
c/2 b

)(
x

y

)
+ d x+ e y + f

(141)
= r⃗TA r⃗ + d x+ e y + f = 0

mit den Koeffizienten a, b, c, d, e, f definiert sind. Es handelt sich bei dieser Gleichung um eine implizite
Funktion der Form F (x, y) = 0 und im Prinzip um ein unterbestimmtes nichtlineares Gleichungssystem, das
nur aus einer Gleichung aber mit zwei Unbekannten besteht.

Die symmetrische 2-reihige (quadratische) Matrix A in (141) besitzt mit den Koeffizienten a, b, c die Form

A =
(
a c/2
c/2 b

)
. (142)

Die linke Seite von (141) wird quadratische Form genannt. Typische 2-dimensionale Quadriken sind beispiels-
weise die Kegelschnitte. Aber nicht alle Lösungen von (141) sind Kegelschnitte, jedoch sind alle Kegelschnitte
Lösungen von (141). Achsenparallele Kegelschnitte befinden sich in Normalform. Ist ein achsenparalleler
Kegelschnitt auch noch in Nullpunkts- oder Ursprungslage, so befindet er sich in seinem Hauptachsensystem,
d. h. die Hauptachsen des Kegelschnitts und die Achsen des Koordinatensystems fallen zusammen.

17.1.1 Hauptachsentransformation
Wir können einen durch (141) beschrieben Kegelschnitt in die Normalform überführen, indem wir
den Kegelschnitt im (x, y)-Koordinatensystem so drehen, dass er im (x, y)-Koordinatensystem achsen-
parallel liegt, oder indem wir das ursprüngliche (x, y)-Koordinatensystem (dazu entgegengesetzt) drehen,
sodass das neue (ξ, η)-Koordinatensystem achsenparallel zum Kegelschnitt liegt. Dabei verschwindet der
Koeffizient c bzw. der für die Verdrehung des Kegelschnitts aus der Normalform zuständige gemischte Term
cxy und aus der symmetrischen Matrix A wird mittels der Transformations- bzw. Drehmatrix S die

Diagonalmatrix DA = STAS . (143)

Hilfreich ist hier, dass Drehmatrizen (reelle) orthogonale Matrizen sind und folglich die Eigenschaft

S = ST = S−1 und im R2 detS = +1 oder detS = −1

besitzen. ST und S sind also die Matrizen für die Diagonalisierung A −→ DA und gleichzeitig ist S aber auch
die Transformationsmatrix für den Übergang der Koordinaten (ξ, η) −→ (x, y) gemäß

r⃗ =
(
x
y

)
= S

(
ξ
η

)
= S ϱ⃗ .
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Erläuterungen zur Verwendung der Drehmatrix S :
Das kartesische (ξ, η)-Koordinatensystem sei im mathematisch positiven Drehsinn gegenüber dem kartesischen
(x, y)-Koordinatensystems um den gemeinsamen Koordinatenursprung um den Winkel α gedreht. Dann wird
die zugehörige Drehmatrix M üblicherweise wie folgt notiert:(

ξ

η

)
= M

(
x

y

)
⇒ M =:

(
cosα sinα

− sinα cosα

)
= S−1 = ST .

In Anlehnung an den Wikipedia-Beitrag zur Hauptachsentransformation verwenden wir für unsere Drehmatrix
S : (

x

y

)
= M−1

(
ξ

η

)
⇒ M−1 =

(
cosα − sinα
sinα cosα

)
= S ⇒ S

(
ξ

η

)
=
(
x

y

)
.

Bei der Diagonalisierung von A mittels S verändern sich die Koeffizienten a, b, c bzw. sie werden so transfor-
miert, dass der Kegelschnitt im (x, y)-Koordinatensystem in seine achsenparallele Form gedreht wird. Die
anschließende Umbenennung der Koordinaten x −→ ξ, y −→ η liefert dann die gewünschte achsenparallele
Form des Kegelschnitts im (ξ, η)-Koordinatensystem.

Da die Gleichung (141) keine Vektorgleichung ist, sind die Koeffizienten d und e der linearen Terme
(Glieder) dx und ey keine skalaren Vektorkomponenten und werden deshalb beim Übergang zum gedrehten
(ξ, η)-Koordinatensystem nicht „direkt“ transformiert. In diesen Gliedern betrifft die Transformation im
Grunde nur die Koordinaten x, y, die durch die Koordinaten ξ, η ersetzt werden müssen, indem man x = x(ξ, η)
und y = y(ξ, η) verwendet. Die resultierenden Terme werden dann geordnet und schließlich zu den linearen
Termen im (ξ, η)-Koordinatensystem zusammengefasst. Die Transformation der linearen Terme geschieht also
mittels S wie folgt:(

x

y

)
= S

(
ξ

η

)
=
(

cosα − sinα
sinα cosα

)(
ξ

η

)
=
(
ξ cosα− η sinα
ξ sinα+ η cosα

)
=
(
x(ξ, η)
y(ξ, η)

)
,

d · x+ e · y = d ·
(
ξ cosα− η sinα

)
+ e ·

(
ξ sinα+ η cosα

)
=
(
d cosα+ e sinα

)︸ ︷︷ ︸ ξ +
(
− d sinα+ e cosα

)︸ ︷︷ ︸ η ,
d · x+ e · y = d̃ · ξ + ẽ · η

mit (
cosα sinα

− sinα cosα

)(
d

e

)
= S−1

(
d

e

)
=
(
d̃

ẽ

)
.

Probe mit
(

ξ
η

)
= S−1( x

y

)
,
(
S−1)T =

(
ST)T = S und (AB)T = BTAT :

d̃ ξ + ẽ η =
(
d̃
ẽ

)T
·
(
ξ
η

)
=
[
S−1

(
d
e

)]T

· S−1
(
x
y

)
=
(
d
e

)T

S · S−1︸ ︷︷ ︸
=1

(
x
y

)
=
(
d
e

)T

·
(
x
y

)
= d x+ e y . □
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Symmetrische (n× n)-Matrizen wie beispielsweise die Matrix A in (142) lassen sich immer mit Hilfe einer
orthogonalen Matrix S diagonalisieren. So entspricht, wie wir später noch sehen werden, beispielsweise die
Drehung einer Ellipse von (147) nach (146) der Diagonalisierung von A (nach DA).

Wir erhalten die Drehmatrix S durch Bestimmung der Eigenwerte λi von A sowie durch Bestimmung der
zugehörigen normierten Eigenvektoren v⃗i aus der quadratischen charakteristischen Gleichung wie folgt :

• Aufstellen der charakteristischen Gleichung1 von A mit der Einheitsmatrix 1 :

det
(
A− λ · 1

)
= det

[(
a c/2
c/2 b

)
− λ

(
1 0
0 1

)]
=
∣∣∣∣∣a− λ c/2
c/2 b− λ

∣∣∣∣∣
= (a− λ)(b− λ) − (c/2)2

= λ2 − λ(a+ b) + ab− (c/2)2 != 0 . (144)

• Lösen der (quadratischen) charakteristischen Gleichung (144) :
Die beiden Lösungen sind die zur Matrix A gehörenden Eigenwerte λ1 und λ2 .

• Bestimmen der normierten Eigenvektoren v⃗1 und v⃗2 aus den zwei Gleichungssystemen

(
A− λ1 · 1

)
· r⃗ =

(
a− λ1 c/2
c/2 b− λ1

)(
x

y

)
= 0⃗ ⇒ ˜⃗v1 ⇒ Normierung ⇒ v⃗1 ,

(
A− λ2 · 1

)
· r⃗ =

(
a− λ2 c/2
c/2 b− λ2

)(
x

y

)
= 0⃗ ⇒ ˜⃗v2 ⇒ Normierung ⇒ v⃗2 .

• Zusammensetzen der normierten Eigenvektoren zur Diagonalisierungs- bzw. Transformationsmatrix

S =
(

v⃗1
∣∣ v⃗2

)
,

wobei die Orientierung der Eigenvektoren so gewählt werden muss, dass detS = +1 ist.
Die zu symmetrischen (reellen) Matrizen A gehörenden Eigenvektoren v⃗i stehen orthogonal auf-
einander und sind normierte Basisvektoren. Sie bilden also in unserem zweidimensionalen Fall die
Orthonormalbasis

{
v⃗1, v⃗2

}
.

• Mit der (orthogonalen) Transformationsmatrix S ⇒ S−1 = ST können wir jetzt die Diagonalmatrix
DA = STAS berechnen, die den Koeffizienten des Kegelschnitts in Normalform entspricht und in der,
wie bereits diskutiert wurde, der Koeffizient c verschwunden ist. Weiterhin stellen wir fest, dass die
Hauptdiagonalelemente von DA die Eigenwerte von A sind gemäß

DA =
(
ã 0
0 b̃

)
=
(
λ1 0
0 λ2

)
.

Durch das Verschwinden des gemischten Terms cxy legen allein die neuen Koeffizienten ã = λ1 und b̃ =
λ2 den quadratischen Anteil der ursprünglichen Gleichung (141) für das (ξ, η)-Koordinatensystem fest,
denn dort erscheint der ursprüngliche Kegelschnitt infolge der Drehung mittels S jetzt in Normalform,
dessen quadratische Terme jetzt nicht mehr durch die symmetrische Matrix A sondern durch die
Diagonalmatrix DA dargestellt werden.

• Wegen f̃ = f = const brauchen wir nur noch mit Hilfe der Transformation(
x

y

)
= S

(
ξ

η

)
=
(

v⃗1
∣∣ v⃗2

)(ξ
η

)
=
(
x(ξ, η)
y(ξ, η)

)
die Koordinaten x, y durch die Koordinaten ξ, η darzustellen und erhalten aus (141)

λ1ξ
2 + λ2η

2 + d x(ξ, η) + e y(ξ, η)︸ ︷︷ ︸
= d̃ ξ + ẽ η

+f = 0 ⇒

λ1ξ
2 + d̃ ξ + λ2η

2 + ẽ η = −f . (145)

Kegelschnitte, die sich im (ξ, η)-Koordinatensystem in achsenparalleler Lage bzw. in Normalform
befinden, erfüllen die Gleichung (145).

1Die Matrix (A− λ1) ist die charakteristische Matrix von A und die Gleichung det(A− λ · 1) != 0 ist
die charakteristische Gleichung mit dem charakteristischen Polynom det(A− λ · 1) .

149



• Nach Ausklammern von λ1 aus den ξ-abhängigen Termen und von λ2 aus den η-abhängigen Termen
lässt sich die Gleichung (145) durch

quadratische Ergänzung von ξ2 + d̃

λ1
ξ und η2 + ẽ

λ2
η

sowie anschließender entsprechender Umformung auf die Form

(ξ − ξ0)2

h2
ξ

+ (η − η0)2

h2
η

= 1 oder ± (ξ − ξ0)2

h2
ξ

∓ (η − η0)2

h2
η

= 1

bringen, aus der man dann die Mittelpunktslage (ξ0, η0) sowie die Halbachsenlängen hξ und hη ablesen
kann.

• Durch die Koordinatentransformation ϱ⃗
S−→ r⃗ , d. h. durch(
x
y

)
= S

(
ξ
η

)
lassen sich schließlich auch noch die Mittelpunkts- und Scheitelkoordinaten der Kegelschnitte im
(x, y)-Koordinatensystem berechnen
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17.1.2 Spezielle Ellipsen
Ellipsen in achsenparalleler Ursprungslage :
Diese befinden sich in der einfachsten Form und erfüllen die Gleichung

a x2 + b y2 + f =
(
x y

)(a 0
0 b

)
︸ ︷︷ ︸
A diagonal

(
x

y

)
+ f = r⃗TDA r⃗ + f = 0 (146)

mit der Diagonalmatrix A = DA und mit a

−f = 1
h2

x

sowie b

−f = 1
h2

y

schließlich die übliche Gleichung

x2

h2
x

+ y2

h2
y

= 1

für eine Ellipse in ihrem Hauptachsensystem. Dabei ist hx die Länge der Halbachse in x-Richtung und hy

ist die Länge der Halbachse in y-Richtung. Entsprechend der Länge von hx und hy spricht man von kleiner
und großer Halbachse. Die Ellipsenachsen, manchmal auch Hauptachsen genannt, mit den Längen 2hx und
2hy stehen senkrecht aufeinander. Die kleine Ellipsenachse bezeichnet man als Nebenachse und die große
Ellipsenachse als Hauptachse.

Ellipsen in achsenparalleler Lage und mit dem Mittelpunkt
(
x0, y0

)
:

Diese erfüllen die Gleichung
(x− x0)2

h2
x

+ (y − y0)2

h2
y

= 1 .

Ausmultiplizieren der Binome liefert

1
h2

x

(
x2 − 2xx0 + x2

0

)
+ 1
h2

y

(
y2 − 2yy0 + y2

0

)
= 1

⇒ 1
h2

x

x2 + 1
h2

y

y2 − 2x0

h2
x

x− 2y0

h2
y

y + x2
0

h2
x

+ y2
0

h2
y

− 1︸ ︷︷ ︸ = 0 ⇒

a x2 + b y2 + d x+ e y + f = 0 .

Wie wir sehen, stehen die linearen Terme dx und ey für die Verschiebung des Mittelpunkts der Ellipse aus
dem Koordinatenursprung.

Ellipsen in nicht achsenparalleler Ursprungslage (schräge Ursprungsellipsen) :
Diese erfüllen die Gleichung

a x2 + b y2 + c xy + f =
(
x y

)( a c/2
c/2 b

)
︸ ︷︷ ︸
A symmetrisch

(
x

y

)
+ f = r⃗TA r⃗ + f = 0 . (147)

Der gemischte Term cxy steht für die Verdrehung der Ellipse im (x, y)-Koordinatensystem. Die Ellipse
ist folglich nicht achsenparallel. Das Fehlen der linearen Terme dx und ey zeigt, dass sich die Ellipse in
Ursprungslage befindet.
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17.1.3 Eigenwerte und Eigenvektoren zur Matrix A

Wir berechnen jetzt die Eigenwerte λi und die Eigenvektoren ˜⃗vi sowie die normierten Eigenvektoren v⃗i der
reellen symmetrischen Matrix

A = ()
über die charakteristische Gleichung (144)

λ2 − λ
(
a+ b

)
+ ab−

(
c/2
)2 != 0

und das homogene lineare Gleichungssystem(
a− λ c/2
c/2 b− λ

)(
x

y

)
= 0⃗ ⇒

I . (a− λ)x + c

2 y = 0 ,

II . c

2 x + (b− λ) y = 0 .
(148)

Für lineares Gleichungssystem schreiben wir im Folgenden kurz LGS. Mit Hilfe der sog. pq-Formel

λ1,2 = −p

2 ∓
√(p

2

)2
− q

zur Lösung quadratischer Gleichungen und mit den Ersetzungen

−(a+ b) = p und ab−
( c

2

)2
= q

erhalten wir die Eigenwerte

λ1 = a+ b

2 −

√(
a+ b

2

)2

− ab+
( c

2

)2
= 1

2

[
(a+ b) −

√
(a− b)2 + c2

]
,

λ2 = a+ b

2 +

√(
a+ b

2

)2

− ab+
( c

2

)2
= 1

2

[
(a+ b) +

√
(a− b)2 + c2

]
.

Mit diesen Eigenwerten gehen wir in das homogene LGS (148), dessen Lösungen dann die Eigenvektoren sind.

Hinsichtlich homogener LGS müssen wir dabei folgendes berücksichtigen:
• Homogene LGS besitzen (immer) die triviale bzw. Nullvektor-Lösung.
• Ist die Anzahl der Variablen in der zu einem homogenen LGS gehörenden Koeffizientenmatrix gleich

ihrem Rang, so ist der Nullvektor die einzige Lösung.
• Triviale Lösungen bzw. Nullvektoren kommen als Eigenvektoren nicht in Betracht : ˜⃗vi

!
̸= 0⃗ .

• Ist der Rang der zu einem homogenen LGS gehörenden Koeffizientenmatrix kleiner als die Anzahl der
Variablen, so existieren unendlich viele Lösungen, die als Eigenvektoren in Betracht kommen.
Eine derartige Matrix ist singulär (nicht invertierbar) und ihre Zeilen sind linear abhängig. Ein zu
einer singulären Koeffizientenmatrix gehörendes homogenes LGS besitzt also außer der „obligatorischen“
trivialen Lösung immer noch mehr als eine Lösung.

• Das bedeutet:
Das zur Koeffizientenmatrix gehörende homogene LGS darf nicht eindeutig lösbar sein, um Eigenvektoren
zu liefern. Alle Vielfachen von Eigenvektoren sind ebenfalls Eigenvektoren.
Die Ursache dafür ist, dass das charakteristische Polynom, also die Determinante der charakteristischen
Matrix zur Bestimmung der zu den Eigenvektoren gehörenden Eigenwerte, gleich Null gesetzt wurde.
Ist aber die Determinante einer Matrix gleich Null, so ist diese Matrix singulär.

• Reelle symmetrische (n× n)-Matrizen und allgemein auch hermitesche (n× n)-Matrizen besitzen nur
reelle Eigenwerte und genau n orthogonale Eigenvektoren zu verschiedene Eigenwerten.
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Bestimmung der Eigenvektoren zur reellen symmtrischen Matrix A

A =
(
a c/2

c/2 b

)
, λ1 = 1

2

[
(a+ b) −

√
(a− b)2 + c2

]
, λ2 = 1

2

[
(a+ b) +

√
(a− b)2 + c2

]
.

Wir verwenden jetzt den Gauß-Algorithmus und schreiben dabei (148) wegen der besseren Übersicht als
(zweizeilige) erweiterte Koeffizientenmatrix(

I
II

)
:=

(
a− λ c/2
c/2 b− λ

∣∣∣∣∣ 0
0

)
.

Bestimmung von ˜⃗v1(λ1) ausa− 1
2

[
(a+ b) −

√
(a− b)2 + c2

]
c/2

c/2 b− 1
2

[
(a+ b) −

√
(a− b)2 + c2

]
∣∣∣∣∣∣∣

0

0

 :

Wir dividieren die Zeile I durch a− 1
2

[
(a+ b) −

√
(a− b)2 + c2

]
: 1 c

/{
2a−

[
(a+ b) −

√
(a− b)2 + c2

]}
c/2 b− 1

2

[
(a+ b) −

√
(a− b)2 + c2

]
∣∣∣∣∣∣∣

0

0

 . (149)

Von Zeile II subtrahieren wir jetzt

c

2 · Zeile I von (149) =

 c

2
c2

4a− 2
[
(a+ b) −

√
(a− b)2 + c2

]
∣∣∣∣∣∣ 0


und erhalten schließlich die mit Hilfe des Gauß-Algorithmus vereinfachte erweiterte singuläre Koeffizientenma-
trix  1 c

/{
2a−

[
(a+ b) −

√
(a− b)2 + c2

]}
0 0

∣∣∣∣∣∣∣
0

0

 .

Wegen (144) muss im letzten Schritt tatsächlich{
b− 1

2

[
(a+ b) −

√
(a− b)2 + c2

]}
− c2

4a− 2
[
(a+ b) −

√
(a− b)2 + c2

] = 0

resultieren, was wir durch akribisches Umformen und Ausmultiplizieren mit dem Zwischenergebnis

c2 = 4ab− 2a
[
(a+ b) −

√
(a− b)2 + c2

]
− 2b

[
(a+ b) −

√
(a− b)2 + c2

]
+
[
(a+ b) −

√
(a− b)2 + c2

]2

zeigen können:
c2 = 4ab− 2(a+ b)2 + (a+ b)2 + (a− b)2︸ ︷︷ ︸

= 0

+ c2 = c2 . □

Wir dürfen jetzt eine der beiden Variablen x1 und y1 frei wählen und erhalten mit y1
!= 1 aus der Zeile I

1 ·x1 + c

2a−
[
(a+ b) −

√
(a− b)2 + c2

] · y1 = 0

y1
!=1=⇒ x1 = c

b− a−
√

(a− b)2 + c2
.

Damit ist der nicht normierte Eigenvektor zum Eigenwert λ1 :

˜⃗v1 =

x1

y1

 =


c

(b− a) −
√

(a− b)2 + c2

1

 .
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Völlig analog ist die Bestimmung von ˜⃗v2(λ2) ausa− 1
2

[
(a+ b) +

√
(a− b)2 + c2

]
c/2

c/2 b− 1
2

[
(a+ b) +

√
(a− b)2 + c2

]
∣∣∣∣∣∣∣

0

0

 :

˜⃗v2 =

x2

y2

 =


c

(b− a) +
√

(a− b)2 + c2

1

 .

Durch Normierung der Eigenvektoren ˜⃗vi gemäß

v⃗i =
˜⃗vi∣∣˜⃗vi

∣∣ =
˜⃗vi√

x2
i + y2

i

erhalten wir die normierten Eigenvektoren

v⃗1 = 1√
1 +

[
c

(b− a) −
√

(a− b)2 + c2

]2


c

(b− a) −
√

(a− b)2 + c2

1

 , (150)

v⃗2 = 1√
1 +

[
c

(b− a) +
√

(a− b)2 + c2

]2


c

(b− a) +
√

(a− b)2 + c2

1

 . (151)

17.1.4 Bestimmung der Halbachsenlängen schräger Ursprungsellipsen
Zunächst überführen wir die Gleichung ax2 + by2 + cxy+ f = r⃗TAr⃗ + f = 0 für eine schräge Ursprungsellipse
durch Diagonalisierung von A, also durch

A =
(
a c/2
c/2 b

)
Diagonalisierung−−−−−−−−−−−→ DA =

(
ã 0
0 b̃

)
=
(
λ1 0
0 λ2

)
in die Gleichung

ãx2 + b̃y2 + f = r⃗TDA r⃗ + f = λ1x
2 + λ2 y

2 + f = 0
für die entsprechende achsenparallele Ursprungsellipse. Aus dieser Gleichung erhalten wir durch Äquivalen-
zumformung die übliche Form der Ellipsengleichung

x2

−f
λ1

+ y2

−f
λ2

= x2

h2
x

+ y2

h2
y

= 1 , f ̸= 0

mit den Halbachsenlängen

hx =
√

−f
λ1

und hy =
√

−f
λ2

.

17.1.5 Bestimmung des Winkels α schräger Ursprungsellipsen
Die Ellipsengleichung (147)

ax2 + by2 + cxy + f =
(
x, y

)( a c/2

c/2 b

)
︸ ︷︷ ︸

A

(
x

y

)
+ f = 0

mit der symmetrischen Matrix A bildet eine schräge (nicht achsenparallele) Ellipse in Ursprungslage auf
das (x, y)-Koordinatensystem bzw. deren Standardbasis

{
e⃗x, e⃗y

}
ab. Zwischen der (großen) Hauptachse der

schrägen (ursprünglichen) Ellipse und der x-Achse des (x, y)-Koordinatensystem liegt dann der Winkel α,
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den wir aus den Koeffizienten bzw. Parametern der schrägen Ellipse berechnen wollen. Dafür benötigen wir
die Drehmatrix S.

Die (passive) Drehung des kartesischen (x, y)-Koordinatensystems K um den Winkel α im mathematisch
positiven Drehsinn gemäß (

x′

y′

)
= S−1

(
x

y

)
=
(

cosα sinα
− sinα cosα

)(
x

y

)

liefert das gedrehte (x′, y′)-Koordinatensystem K′ und ist gleichbedeutend mit der (aktiven) Drehung des
Ortsvektors r⃗ =

( x
y

)
innerhalb des (x, y)-Koordinatensystems K um den Winkel α im mathematisch

negativen Drehsinn. Die Umkehroperation dazu bzw. die Drehung in umgekehrter Richtung wird beschrieben
durch die Drehmatrix

S =
(

cosα − sinα
sinα cosα

)
⇒ ST = S−1 .

Bei der Diagonalisierung von A gemäß (143)

STAS = DA =
(
λ1 0
0 λ2

)

mit der (orthogonalen) Drehmatrix
S =

(
v⃗1
∣∣ v⃗2

)
,

deren Spalten die orthonormalen Eigenvektoren v⃗1 und v⃗2 zu A sind, resultiert die Diagonalmatrix DA, die
der Abbildung der ursprünglichen Ellipse in ihrem (x, y)-Hauptachsensystem entspricht. Anders gesagt, mit
Hilfe der Drehmatrix S wird die ursprünglich schräge Ellipse um den Winkel α so gedreht, dass sie schließlich
im (x, y)-Koordinatensystem achsenparallel liegt. Der Übergang von der schrägen zur achsenparallelen Ellipse
durch Drehung um den Winkel α stellt sich ausgehend von (147) wie folgt dar:

(
x, y

)
A

(
x
y

)
−→

(
x, y

)
STAS

(
x
y

)
=
(
x, y

)
DA

(
x
y

)
.

Das aber bedeutet, dass wir den Drehwinkel α aus der Drehmatrix

S =
(

v⃗1
∣∣ v⃗2

)
=
(

cosα − sinα
sinα cosα

)
⇒ v⃗1 =

(
cosα
sinα

)
, v⃗2 =

(
− sinα

cosα

)

ermitteln können, denn die normierten Eigenvektoren v⃗1 und v⃗2 zur Matrix A hatten wir bereits mit (150)
und (151) berechnet.

Anmerkungen
Die Vertauschung der normierten Eigenvektoren bzw. der Spalten in der Drehmatrix S bewirkt eine Vertau-
schung der Eigenwerte in der Diagonalmatrix DA und damit eine Änderung der Schrägstellung der Ellipse um
90◦, also eine Vertauschung der Richtung von Haupt- und Nebenachse. Weil von vornherein aber nicht klar
ist, welcher der beiden Eigenvektoren die Richtung der Hauptachse und welcher die Richtung der Nebenachse
besitzt und da man der Ellipsengleichung (147) die Richtung der Ellipsenachsen nicht unbedingt ansieht,
kann es ratsam sein, sich diesbezüglich vorab Klarheit zu verschaffen.

Dafür bestimmen wir in (147) die beiden y-Werte für einen möglichst kleinen festen Wert x0 > 0, indem
wir ax2

0 + by2 + cx0y + f = 0 in die quadratische Gleichung y2 + py + q = 0 umformen und diese mittels der
sog. pq-Formel lösen. Wir erhalten die beiden Lösungen y+(x0) > 0 und y−(x0) < 0, die uns zeigen, welche
der Ellipsenachsen durch den ersten Quadranten verläuft:

|y+| > |y−| ⇒ (große) Hauptachse liegt im 1. Quadranten,

|y+| < |y−| ⇒ Nebenachse liegt im 1. Quadranten.

Dabei stellen wir fest, dass der kleinere der beiden Eigenwerte λ den Eigenvektor liefert, welcher die Hauptachse
beschreibt. Wählen wir beispielsweise λ1 < λ2, so beschreibt der zu λ1 gehörende Eigenvektor v⃗1 die Richtung
der Hauptachse und der zu λ2 gehörende Eigenvektor v⃗2 die Richtung der Nebenachse.
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17.2 Zu Abschnitt 7.3 – Berechnung von E0x und E0y

Achtung!
Die Länge der Halbachsen bezeichnen wir in diesem Abschnitt wie allgemein üblich mit
a und b. Abweichend davon hatten wir in der Abbildung 13 (wegen der Notation bei der
Hauptachsentransformation im Abschnitt 17.1) die Länge der großen Halbachse mit H und
die Länge der kleinen Halbachse mit h bezeichnet.

Das (x′, y′)-Koordinatensystem K ′ sei das Hauptachsensystem der Ellipse

E ′ := x′2

a2 + y′2

b2 = 1 ⇔

 x′ = x′(y′) = a
b

√
b2 − y′2 ,

y′ = y′(x′) = b
a

√
a2 − x′2 .

(152)

K ′ sei gegenüber dem (x, y)-Koordinatensystem K um den gemeinsamen Koordinatenur-
sprung im mathematisch positiven Sinn um den Winkel α gedreht, sodass E ′ in K als die
schräge Ursprungsellipse E erscheint. Die Substitution der K ′-Koordinaten durch die zugehö-
rigen K-Koordinaten in (152) liefert dann die Gleichung von E in K. Die dafür erforderlichen
in (x, y)-Koordinaten ausgedrückten (x′, y′)-Koordinaten erhalten wir mit der Drehmatrix
S−1 gemäß(

x′

y′

)
= S−1

(
x

y

)
=
(

cosα sinα
− sinα cosα

)(
x

y

)
=
(

x cosα+ y sinα
−x sinα+ y cosα

)
=
(
x′(x, y)
y′(x, y)

)
.

Damit resultiert aus (152)

E := 1
a2

(
x cosα+ y sinα

)2
+ 1
b2

(
− x sinα+ y cosα

)2
= 1 = F (x, y) . (153)

Die Extrema (Index E) der Ellipse E in K sind

yE = y(x0) = ±|yE| an den Stellen x0 = ±|x0| oder x0 = ∓|x0| ,

xE = x(y0) = ±|xE| an den Stellen y0 = ±|y0| oder y0 = ∓|y0| .

Diese bestimmen wir, indem wir zunächst (153) implizit nach x bzw. nach y differenzieren
und anschließend dy

dx bzw. dx
dy gleich Null setzen. Dabei verwenden wir

d
dxF (x, y) = ∂F

∂x
+ ∂F

∂y

dy
dx = 0 ⇔ dy

dx = − Fx

Fy
und analog dx

dy = − Fy

Fx
:

dy
dx = −

1
a2 2(x cosα+ y sinα) cosα+ 1

b2 (−x sinα+ y cosα)(− sinα)
1
a2 2(x cosα+ y sinα) sinα + 1

b2 (−x sinα+ y cosα) cosα
!= 0

⇒ x = x0 ⇒ y(x0) = yE =⇒

1
a2 2(x0 cosα+ yE sinα) cosα+ 1

b2 2(−x0 sinα+ yE cosα)(− sinα) = 0
∣∣∣∣ · a2b2

2

b2 (x0 cosα+ yE sinα) cosα − a2 (−x0 sinα+ yE cosα) sinα = 0 ⇔

x0 (a2 sin2 α+ b2 cos2 α) = yE sinα cosα (a2 − b2) ,

x0 = yE
(a2 − b2) sinα cosα
a2 sin2 α+ b2 cos2 α︸ ︷︷ ︸

kx

= kx · yE .
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Dies setzen wir in die Ellipsengleichung (153) für F (x, y) −→ F (x0, yE) ein und erhalten
1
a2

(
kx yE cosα+ yE sinα

)2
+ 1
b2

(
− kx yE sinα+ yE cosα

)2
= 1 ,

y2
E

(kx cosα+ sinα)2

a2 + y2
E

(cosα− kx sinα)2

b2 = 1 ⇔

y2
E = a2 b2

b2 (kx · cosα+ sinα)2 + a2 (cosα− sinα · kx)2 ,

y2
E = 1

1
a2

[
(a2−b2) sin α cos α
a2 sin2 α+b2 cos2 α

· cosα+ sinα
]2

+ 1
b2

[
cosα− sinα · (a2−b2) sin α cos α

a2 sin2 α+b2 cos2 α

]2 ,

(154)

yE = 1√
1
a2

[
(a2−b2) sin α cos2 α
a2 sin2 α+b2 cos2 α

+ sinα
]2

+ 1
b2

[
cosα− (a2−b2) sin2 α cos α

a2 sin2 α+b2 cos2 α

]2
.

yE entspricht dabei E0y . Wie man sofort sieht, gilt wie erwartet

α = 0◦ ⇒ yE = ±b , α = 90◦ ⇒ yE = ±a .

Völlig analog erhalten wir aus dem Ansatz dx
dy

!= 0 ⇒ F (x, y) −→ F (xE, y0) und
x(y0) = xE mit

y0 = xE
(a2 − b2) sinα cosα
a2 cos2 α+ b2 sin2 α︸ ︷︷ ︸

ky

= ky · xE

schließlich
x2

E = 1
1
a2

[
cosα+ sinα · (a2−b2) sin α cos α

a2 cos2 α+b2 sin2 α

]2
+ 1
b2

[
(a2−b2) sin α cos α
a2 cos2 α+b2 sin2 α

· cosα− sinα
]2 ,

(155)

xE = 1√
1
a2

[
cosα+ (a2−b2) sin2 α cos α

a2 cos2 α+b2 sin2 α

]2
+ 1
b2

[
(a2−b2) sin α cos2 α
a2 cos2 α+b2 sin2 α

− sinα
]2

.

xE entspricht dabei E0x . Wie man sofort sieht, gilt wie erwartet

α = 0◦ ⇒ xE = ±a , α = 90◦ ⇒ xE = ±b .

Weiterhin gilt

a2 + b2 = x2
E + y2

E ,

was man mit (154) und (155) beispielsweise für α = 45◦ ⇒ sin 45◦ = cos 45◦ = 1√
2 leicht

zeigen kann, denn in diesem Fall gilt

x2
E + y2

E = 1
2
(
a2 + b2)+ 1

2
(
a2 + b2) = a2 + b2 .

Und für a = 4, b = 3, α = 30◦ ⇒ sin 30◦ = 1
2 , cos 30 =

√
3

2 erhalten wir

x2
E = 14, 25 , y2

E = 10, 75 ⇒ x2
E + y2

E = 25 = a2 + b2 .
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