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1 Vorbemerkungen

e Die Maxwell’schen Gleichungen ermoglichen die vollstdndige Beschreibung elektroma-
gnetischer Wellen und damit von Licht im Wellenbild — aber nicht im Teilchenbild.

o Im Teilchenbild besteht Licht aus Lichtquanten, den Photonen (Index ph fiir Photon).

e Im photoelektrischen Effekt manifestiert sich der Teilchencharakter des Lichts als
Planck-Einstein-Beziehung
Ey, = h-v

(Eph Energie eines Photons, h Planck’sches Wirkungsquantum, v Lichtfrequenz).

« Die Wellenléinge A bzw. der Wellenvektor k oder die Wellenzahl |k | = k = 2 sind
charakteristische Welleneigenschaften.
Der Impuls |p/| = p ist eine charakteristische Teilcheneigenschaft.
Die De Broglie-Beziehung
h 27 h

Rk = 2t
P o7 A A

gilt fiir Teilchen ohne Ruhemasse, also fiir Photonen, und verkniipft den Wellencharakter
(Wellenlédnge \) des Lichts mit dessen Teilchencharakter (Impuls p), wie man am Beispiel
des Strahlungsdrucks verifizieren kann:

Dass ein Photon den Impuls py,), besitzt, zeigt sich in der Kraftwirkung beim Auftreffen
von Licht auf ein Hindernis, d. h. durch den vom Licht ausgeiibten Strahlungsdruck P.

Ausgehend von der Maxwell’schen Gleichung V x E = —%é fiir das Vakuum und
ausgehend von den aus den Maxwell’schen Gleichungen abgeleiteten Wellengleichun-

gen
.1 0% o L1 0% 4
2 2p _
fiir das E-Feld bzw. fiir das B-Feld im Vakuum erhalten wir die Beziehung
Bl = L |B =&
c c

und damit dann den Strahlungsdruck P einer elektromagnetischen Welle :!

I
P = —, Intensitdt I, Vakuumlichtgeschwindigkeit c .
c

Fiir den Strahlungsdruck gilt also sinngeméf

Kraft Impuls 1Energie 1
Strahl druck = = = =< = — . Intensitét .
FAlTHIESEre Flache Zeit - Flache Zeit - Fléache c Hetista
Ist ¢ die , Teilchenzahlintensitat“, also die Anzahl der pro Zeiteinheit und pro Flichen-
einheit auf ein Hindernis treffenden Photonen monochromatischen Lichts der Frequenz
v, dann gilt mit dem Impuls py, und der Energie h - v eines Photons
1 1+ hy . h

P:E: - :Z-X:i-hk:i-pph =

pph = hk. U

!Herleitungen des Strahlungsdrucks elektromagnetischer Wellen finden sich beispielsweise in: Spektrum-
Lehrbuch Physik von Paul A. Tipler, 1. Auflage, Spektrum Akademischer Verlag, Heidelberg, Berlin, Oxford,
1994, Seite 1000 bis Seite 1005,

Springer-Lehrbuch Gerthsen Physik, H. Vogel, 20. Auflage, Springer-Verlag, Berlin, Heidelberg, New York,
1999, Seite 601.




e Fiir ein Teilchen wie beispielsweise das Elektron mit der Ruhemasse mg, der Geschwin-
digkeit v und dem klassischen Impuls p gilt die klassische Beziehung
h2 k> mo - v 1

Eyin = 9 = 5 R LALE v C. (2)

Photonen besitzen keine Ruhemasse, bewegen sich mit Lichtgeschwindigkeit und sind
demzufolge relativistische Teilchen mit der Energie

Eoh = pph-¢ = h-v. (3)
(3) resultiert aus
h h E
E=m®=h & m:—; und pph:m.c:%.cziph_
c c c

e Photonenspin
Photonen besitzen also einen linearen Impuls pp, = h—c” = hk mit ppn 17 k.

,» Wenn ein geladenes Teilchen elektromagnetische Strahlung emittiert oder absorbiert,
dndert sich neben seiner Energie und seinem linearen Impuls auch sein Drehimpuls
um ein ganzzahliges Vielfaches von +h.“? Neben dem linearen Impuls besitzen
Photonen demzufolge auch einen Drehimpuls bzw. Eigendrehimpuls, auch intrinsischer
Drehimpuls oder kurz Spin § genannt. Photonen sind folglich Spin-1-Teilchen bzw.
Bosonen.

Der Photonenspin ist unabhangig von der Photonenenergie und entspricht ei-
nem zusétzlichen Freiheitsgrad des Photons (neben dem linearen Impuls). Die
Orientierung des Spins eines Photons ergibt sich aus dessen Helizitat ¢ und wird in
Bezug auf die ,erzwungene” Rotation positiver Ladungen in absorbierenden Medien
definiert:

Wy

linkszirkulare Polarisation (£- oder o'-Zustand) i E,

Y

rechtszirkulare Polarisation (R- oder o~ -Zustand) : §1|

Beziiglich £ und R haben wir hier die althergebrachte Konvention aus der Optik
verwendet. In der Quantenphysik sind die Eigenschaften links- und rechtszirkular tiber
die Helizitdt und demzufolge umgekehrt definiert, sodass dort fiir die zirkularen
Polarisationszustinde

L — |oT)=|R) und R — |o7) =|L)

gilt.

Linear polarisiertes Licht kann man als Uberlagerung gleicher Anteile von rechts- und
linkszirkular polarisiertem Licht auffassen, wobei die beiden Spinzustidnde 4/ mit der
gleichen Wahrscheinlichkeit vorkommen, sodass kein Gesamtspin resultiert.

Dementsprechend handelt es sich bei elliptisch polarisiertem Licht um eine Uberlagerung
ungleicher Anteile von |o7)- und |0~ )-Zusténden, sodass die Spins +/ und —A mit
unterschiedlicher Wahrscheinlichkeit vorkommen und so ein positiver oder negativer
Gesamtspin resultiert.

2Zitiert aus: Eugene Hecht, Optik, 4. Auflage, Oldenbourg Verlag, Wien, Miinchen, 2005, Seite 535.



o Analog zu den Wellengleichungen (1) fiir elektromagnetische Wellen und unter Be-
riicksichtigung von (2) gilt fiir nichtrelativistische (klassische) Teilchen mit einer
Ruhemasse mg allgemein die zeitabhingige Schrédinger-Gleichung

h? 0

—TmOVZW(F,t)JrV('F,t)W(F,t) = iho U(rt) .
=R = Epot = F,
= Lkin ges

Fiir den Fall eines explizit zeitunabhéngigen Potentials V' = V(7), d. h. fiir stationére
Zustande bzw. Gleichgewichtszustdnde wie beispielsweise beim Atom-Schalenmodell
resultiert aus der zeitabhidngigen Schrodinger-Gleichung die zeitunabhéngige oder
stationidre Schrodinger-Gleichung

—— VU(F)+V(F) ¥(F) = E-¥(F).

e Die Losungen ¥ der Schrédinger-Gleichung sind normierte quadratintegrable kompleze
Wellenfunktionen (Zustidnde), die auch Wahrscheinlichkeitsamplituden genannt
werden, nicht beobachtbar bzw. nicht messbar sind und demzufolge keine physikalische
Realitat besitzen. Die entsprechende beobachtbare Messgrofie ist die (reelle) Wahr-
scheinlichkeitsdichte |¥|?. Die unter den gegebenen physikalischen Bedingungen
(insbesondere V (7, t)) mit Hilfe der Schrédinger-Gleichung ermittelten Wahrscheinlich-
keitsamplituden ermoglichen mit ihrem Betragsquadrat die raumliche Darstellung der
Wahrscheinlichkeitsverteilung der Energie — ggf. auch in Abhéngigkeit von der Zeit.
So entsprechen sich im Raum ausbreitende Wellenpakete zeitabhéngigen Zusténden,
wahrend man sich stationédre Zustdnde als stehende Wellen veranschaulichen kann. Die
Wahrscheinlichkeitsamplitude sagt also etwas aus iiber die Aufenthalts- oder Antreff-
wahrscheinlichkeit eines Teilchens im Bereich des ihm entsprechenden Wellenpakets
bzw. Wellenzugs.

e Zusammenhang zwischen Beugung (Wellenbild) und
Heisenberg’scher Unschirferelation (Teilchenbild)

Betrachten wir die Beugung von Licht der Wellenldnge A am Einfachspalt der Breite
b, so gilt im Wellenbild fiir den Beugungswinkel a bis zum ersten Minimum:
: _ A
b-sihna = A & sina = 7
Diese Gleichung ldsst sich mit Hilfe der De Broglie-Beziehung auch durch den Im-
puls p = hE, also im Teilchenbild ausdriicken. Dafiir nehmen wir an, dass der Spalt
langs der y-Achse verlduft, sich die Spaltbreite folglich ldngs der xz-Achse erstreckt,
und dass sich das einfallende Licht mit dem Wellenvektors k = (0, 0, k) langs der
z-Achse ausbreitet. Dann gilt beziiglich des ersten Minimums mit dem Wellenvektor
k= (kz, 0, k) des ausfallenden Lichts in der (z,x)-Ebene hinter dem Spalt :

o . 2
k, = |k|sina = ksina = —sina = — —~ =

Die daraus resultierende de-Broglie-Beziehung lautet

h 2w h
p o b b
prb = h.



,»b kann man als eine Positionsfestlegung der durchgehenden Photonen auf der
x-Achse auf den Bereich Az = b interpretieren. Ap, andererseits kann man als eine
Unbestimmtheit des Impulses p, in Bezug auf die z-Richtung interpretieren, da es ja
eine vertikale Ablenkung von der geradlinigen Fortbewegung beschreibt. Der Grund
dafiir liegt darin, dass jeder Punkt auf dem ,,Beugungsfleck® als moglicher Auftreffpunkt
eines Photons in Frage kommt. D.h. der Beugungsfleck engt im Wesentlichen den
Bereich ein, in dem das Photon statistisch betrachtet auftreffen kann. In diesem Sinne
kann man obige Gleichung auch so schreiben: 3

Ap, - Ax =~ h = 2nh.

Dies entspricht der Heisenberg’schen Impuls-Orts-Unschirferelation

h h
Ap, - Ax > w3
Die Lichtbeugung im Wellenbild entspricht, wie man sieht, der Heisenberg’schen Unschér-
ferelation im Teilchenbild. Dies zeigt sich in der Tatsache, dass sich das ,,Beugungsbild“
aufspreizt, wenn der Spalt schmaler gewéhlt wird. Mit anderen Worten, wenn die Breite
b = Az des Spalts und damit auch die Unbestimmtheit der Photonen im Ort kleiner
werden, wird im Gegenzug die Unbestimmtheit Ap, des Impulses der Photonen grofler.
Die Unbestimmtheit im Ort und im Impuls der Teilchen verhalten sich in bestimmter
Weise reziprok zueinander.

Der Vollstandigkeit halber geben wir noch die Heisenberg’sche Energie-Zeit-

Unscharferelation an: 5
AFE - At > 3"

3Mit kleinen Anderungen der Notation zitiert aus: Josef Oswald, Grundprinzipien der Quantenphysik,
Vorlesung — WS03/04, Seite 9, https://oswald.unileoben.ac.at/qpvl_1/qpvl.pdf



2 Intensitiat elektromagnetischer Wellen

Siehe auch: Wolfgang Demtroder, Springer-Lehrbuch Experimentalphysik 2, Elektrizitat und Optik, 3. Auflage,
Springer-Verlag, Berlin, Heidelberg, New York, 2004, Abschnitt 7.5 Das Magnetfeld elektromagnetischer Wellen
und Abschnitt 7.6 Energie- und Impulstransport durch elektromagnetische Wellen, Seite 193 bis Seite 195.

Die (momentane) Energieflussdichte, auch Energiestromdichte genannt, ist definiert durch

den
. T B L L
Poynting-Vektor S = E x H = —(E x B) = eocj(E x B) .
Ho
H ist die magnetische Feldstirke und B die magnetische Flussdichte. Die Vektoren
S, E, H bilden ein rechtshéndiges, rechtwinkliges Dreibein. Im Vakuum propagiert die

(j'amit beschriebene elektromggnetische Welle in Richtung des Wellenvektors k, wobei dann
k 17 S ist und folglich auch k, E, B ein rechtshéndiges Dreibein bilden gemé&f

. 1.~ 1
B:—(kxE) = B=—(k-E).
w w
. . 1
Dabei haben wir w=¢y-k < —— = —  verwendet.
cok w

Fiir eine ebene elektromagnetische Welle im Vakuum gilt folglich:

Die Feldvektoren E und B stehen senkrecht aufeinander, schwingen in Phase und stehen
senkrecht zur Ausbreitungsrichtung, definiert durch den Wellenvektor k, sodass fiir den
Betrag von B gilt . 1. 1
|B| = —|E| = B=—E.

€o €o
Achtung! Bei Anwesenheit von elektrischen Stromen oder/und Ladungen stehen E
und B nicht unbedingt senkrecht aufeinander und in anisotropen Medien kénnen S und

k in verschiedene Richtungen zeigen.

Der zeitliche Mittelwert des Betrags des Poynting-Vektors (im Vakuum) tiber ein
Zeitintervall At > T = 1 = 2 st die!

co
Intensitat I = <|§’> = 5003<|Ex§‘> = €90 <E2>

Mit dem Betrag A der Amplitude A des elektrischen Feldes E = A - cos (EF — wt) ist der
zeitliche Mittelwert von E? :

2\ 42 2 (02 _12
<E>—A <cos (kr wt)>— 2A.

=3 fir At>T

Damit ist die Intensitéit einer ebenen elektromagnetischen Welle im Vakuum

1
I = 56000142 . (4)

Sinngema$ ist die Intensitét die pro Zeiteinheit durch eine Flidcheneinheit flieende zeitlich
gemittelte Energie. Sie besitzt demzufolge die Mafleinheit

J

s - m2

[ =1 = 1W/m?.

!Die Intensitét wird in der Optik auch Bestrahlungsstiirke genannt.



Betrachten wir die Intensitét einer elektromagnetischen Welle innerhalb eines homogenen,
isotropen Dielektrikums (Mediums) mit dem Brechungsindex n, so wird in (4) aus der
elektrischen Feldkonstante bzw. der Permittivitdt des Vakuums ey die Permittivitiat des

Mediums e = e -

und aus der Vakuumlichtgeschwindigkeit cg die Lichtgeschwindigkeit im Medium
€0

c = —.

n

Die Intensitét einer ebenen elektromagnetischen Welle in einem homogenen, isotropen Medium
ist damit schliefllich

1 c 1
I = §€r€0£A2 = 550142

Achtung! Uberlagerte kohirente Wellenziige unterscheiden sich in ihrer Intensitit von
iiberlagerten inkohérenten Wellenziigen:

Siehe dazu die Abschnitte Kohdrente Streuung und Interferenz sowie Inkohdrente Streuung
unter

www.leap.uni-kiel.de/et/people/wimmer/teaching/Phys_II/P2_V8.pdf

 Uberlagerung kohérenter Wellenziige (kohérente Streuung):

Die Intensitét entspricht dem Quadrat der Summe aller Amplituden der Wellenziige
(aller Streuamplituden).

In Abhéngigkeit von der Phasendifferenz § bzw. dem Gangunterschied As zwischen den
Wellenziigen liefert die Intensitét ein Interferenzmuster (siehe auch Abschnitt 11.2.1)
mit den Maxima

1
Iax = 58000(141 + Ao)? fir 6 =m -2, m=0,1,2, ...
und den Minima

1
Thin = 56060(141 — AQ)Z fir 6 = (2m+ 1) -m,m=20,1,2,

o Uberlagerung inkohérenter Wellenziige (inkohirente Streuung):

Die Intensitét ist gleich der Summe der Intensititen der einzelnen Wellenziige (der
gestreuten Wellen):

1
I = Il"—IQ = 56060(14%—{—14%) .

Wie man sieht, entsteht bei Inkohérenz der Wellenziige kein Interferenzmuster.

10



Kugelwellen

Beim Umgang mit (zentralsymmetrischen) Kugelwellen ist es bequemer, Polarkoordinaten zu
verwenden. So bezeichnet die Koordinate || = r € R den raumlichen Abstand eines Punktes
im Kugelwellenfeld von der Quelle. Weil bei Kugelwellen k 1T 7 gilt, kdnnen wir statt k-7
vereinfachend kr schreiben. Fiir die Intensitit bzw. Bestrahlungsstéirke hatten wir bereits
festgestellt:

I x |E]*=E?. (5)

Im Gegensatz zur ebenen Welle E(7,t) = Ae*™ % ist bei der Kugelwelle die Phase neben ¢
insbesondere von r abhéngig und die Intensitédt und folglich auch die Amplitude A héngen nur
vom Abstand r zur Punktquelle ab. Aus der vektoriellen Darstellung E(F, t) in kartesischen
Koordinaten wird somit E(r,t) in Polarkoordinaten. Weil fiir die Intensitét der Kugelwelle
das Abstandsquadrat-Gesetz gilt, also

IO(T727

miissen wegen (5) fiir die Kugelwelle die folgenden Beziehungen gelten :

F 1 = E(T,t) — A(?‘) ei(krfwt) _ @ei(krfwt)

T r

Dabei ist die Amplitude A(r) = % umgekehrt proportional zum Abstand r von der Quelle

geméf .
A(r) « .

Ap = const ist hier also nicht die Amplitude, was man auch an der Dimension von Aj sieht.

11



3 Absorption und Emission elektromagnetischer Strahlung

3.1 Schalenmodell und Orbitalmodell

Literaturtips:

e Holger Hoffmeister, Freies Lehrbuch ,Anorganische Chemie*, Kapitel 19 Das Orbitalmodell
als Atommodell, 2020
https://hoffmeister.it/index.php/chemiebuch-anorganik/227-freies-1lehrbuch-
anorganische-chemie-19-das-orbitalmodell-als-atommodell

e 5. Energiezustinde von Atomen und Atomorbitale
https://ethz.ch/content/dam/ethz/special-interest/chab/physical-chemistry/
ultrafast-spectroscopy-dam/documents/lectures/allgemeinechemieHS17/script/

Kapitel’,205.pdf

Wir betrachten im Folgenden nicht Molekiile sondern vereinfachend und ausgehend vom
Periodensystem der Elemente nur Atome. Atome besitzen genauso viele Elektronen wie
Protonen, sind also nicht ionisiert und demzufolge nach auflen elektrisch neutral. Die Ord-
nungszahl der Elemente repriasentiert die Anzahl der Protonen im Atomkern und damit
auch die Anzahl der Elektronen in der zugehorigen Atom-Elektronenhiille. Die (potentielle)
Energie kernferner Elektronen ist grofler als die Energie kernnaher Elektronen. Deshalb
lassen sich kernferne Elektronen (,,Leuchtelektronen®) leichter, d.h. mit weniger Energie-
aufwand aus der Elektronenhiille herauslésen. Mit anderen Worten, ndher am Atomkern
befindliche Elektronen sind stéarker an den Atomkern gebunden als kernferne. Demzufolge
sind fiir die Absorption und Emission elektromagnetischer Strahlung im sichtbaren Bereich
(Licht, Photonen vergleichsweise niedriger Energie) die &ufleren Schalen der Elektronenhiille
der Atome verantwortlich.

e Das Periodensystem der Elemente besteht aus acht Hauptgruppen und sieben
Perioden. Im Schalenmodell der Atom-Elektronenhiille entspricht jede neue Periode
einer zusétzlichen Schale. Elemente der ersten Periode besitzen also nur eine Schale, die
K-Schale, Elemente der zweiten Periode besitzen zwei Schalen, die K-Schale und die
L-Schale, usw. Die siebente und letzte Periode besitzt demzufolge sieben Schalen: K-, L-,
M-, N-, O-, P- und Q-Schale. In die innerste Schale, die K-Schale, passen maximal nur
zwei Elektronen. In alle anderen Schalen passen maximal acht Elektronen (Oktettregel).

Betrachtet werden hierbei die Atome der Elemente in ihrem Grundzustand, d.h. im
Zustand geringstmoglicher Energie, also nicht in irgendeinem angeregten und schon
gar nicht im ionisierten Zustand.

e Den Schalen entsprechen bestimmte Energiebereiche, wobei die Schalenenergie prin-
zipiell von der innersten (K-Schale) zur duBlersten (Q-Schale) ansteigt. Allerdings
iiberlappen sich die Energiebereiche der Schalen ab der M-Schale (ab der 3. Scha-
le) aufwérts. So befinden sich die fiinf 3d-Orbitale der M-Schale auf einem hoheren
Energieniveau als das 4s-Orbital der N-Schale.

e Die Besetzung der Schalen mit Elektronen erfolgt auf bestimmte Weise strukturiert in
Unterschalen. Diese Unterschalen werden auch Orbitale genannt, woraus das Orbitalm-
odell der Atom-Elektronenhiille resultiert. Orbitale sind die Raumbereiche, in denen
sich Elektronen mit 95%iger Wahrscheinlichkeit ,aufhalten®. Orbitale reprasentieren Lo-
sungen (Wahrscheinlichkeitswellenfunktionen U(r )) der Schrodinger-Gleichung, denn
|#|? ist die Wahrscheinlichkeitsdichte und somit ein Ma# fiir die Wahrscheinlichkeit,
ein Elektron zu einer bestimmten Zeit an einem bestimmten Ort anzutreffen.

Aber Achtung!
Wegen der Heisenberg’schen Unschérferelation besitzen die Aufenthaltsbereiche der
Elektronen der jeweiligen Orbitale keine feste bzw. keine scharfe Grenze.
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¢ Orbitale entsprechen quantenmechanischen Zustéinden der Elektronen und werden
durch vier Quantenzahlen charakterisiert: Hauptquantenzahl n, Neben- oder Drehim-
pulsquantenzahl I, Magnetquantenzahl m und magnetische Spinquantenzahl m; oder
auch s.

1. Den sieben Schalen K bis Q (von innen nach aufilen) werden die
Hauptquantenzahlen n=1 bis n=7 zugeordnet.

2. Die Nebenquantenzahlen (Drehimpulsquantenzahlen, azimutale Quanaten-
zahlen) [ sind ganze Zahlen von | = 0 bis [ = (n — 1). Sie bestimmen den
Bahndrehimpuls der Elektronen und die (geometrische) Form der Orbitale:

ausgeschrieben Orbitale Nebenquantenzahl Form

sharp s-Orbital I1=0 Kugel
principal p-Orbitale =1 Hantel
diffuse d-Orbitale =2 gekreuzte Doppelhantel
fundamental f-Orbitale =3 Rosette
g-Orbitale =4
h-Orbitale =5
i-Orbitale =6
3. Die Magnetquantenzahl m eines Orbitals kann die ganzen Zahlen von m = —I

bis m =1 einschliellich m = 0 annehmen, also
m=—l,—(1—=1),...,0,...,(I=1),1.

Manchmal wird fiir die Magnetquantenzahl auch das Symbol m; verwendet. Sie
beschreibt die rdumliche Ausrichtung, die ein Orbital beziiglich eines dufleren
Magnetfeldes einnimmt und tritt demzufolge nur in Erscheinung bzw. ist nur
messbar, wenn von auflen ein Magnetfeld angelegt wird.

4. Der Spin eines Elektrons entspricht gleichsam einem inneren Drehsinn des Elek-
trons, wird deshalb auch Eigen- oder intrinsischer Drehimpuls genannt und besitzt
die Spinquantenzahl s = % . Beziiglich eines dufleren Magnetfeldes kénnen Elek-
tronen zwei Drehsinne einnehmen, der eine entspricht dem
Spin-up (Symbol 1) mit der magnetischen Spinquantenzahl m, = —i—% ,
der entgegengesetze Drehsinn entspricht dem
Spin-down (Symbol |) mit magnetischer Spinquantenzahl m, = —%. Wie
die Ausrichtung des Bahndrehimpulses (Magnetquantenzahl m) tritt auch die
Spinausrichtung (magnetische Spinquantenzahl mg) nur bei Vorhandensein ei-
nes aufleren Magnetfeldes in Erscheinung. Manchmal wird fiir die magnetische
Spinquantenzahl einfach das Symbol s verwendet.

o Leider existiert keine mathematische Formel zur Ermittlung der Elektronenkonfiguration
der Atome. Es gibt nur die folgenden Regeln fiir die sukzessive Besetzung der Schalen
und Orbitale mit Elektronen, wobei man vom niedrigsten Energieniveau des einen
Elektrons des Wasserstoffatoms ausgeht und dann die Besetzung mit zunehmender
Hohe der Energieniveaus der Elektronen der folgenden Elemente fortsetzt. Entscheidend
flir die Besetzung ist also nicht die ansteigende Ordnungszahl der Elemente sondern
die Zunahme der Hohe der Energieniveaus.

Aufbauprinzip :
Jedes neu hinzugefiigte Elektron ,sucht sich“ den Zustand geringster Energie.
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Hund’sche Regel' :

Orbitale gleicher Energie werden immer nacheinander zuerst einzeln, d.h. mit nur
einem Elektron besetzt. Dabei haben diese ungepaarten Elektronen alle den gleichen
Spin. Erst danach erfolgt die Doppelbesetzung.

Pauli’sches AusschlieBungsprinzip (Pauli-Verbot):
In einem Atom konnen sich niemals zwei Elektronen in demselben quantenmechanischen
Zustand befinden. Sie miissen sich immer wenigstens in einer Quantenzahl unterscheiden.

Die Anwendung dieser drei Regeln fithrt zum Madelung-Schema der Elektronenkon-
figurationen der Elemente

Gemeinsam haben Aufbauprinzip, Hund’sche Regel und Pauli-Verbot zur Folge, dass
Orbitale hochsten mit zwei (gepaarten) Elektronen unterschiedlichen Spins besetzt
werden konnen.

So besitzen die Elemente der zweiten Nebengruppe die K-Schale (n = 1) und die L-
Schale (n = 2). In der K-Schale gibt es nur eine Unterschale, das 1s-Orbital (n =1, | =
0) . In der L-Schale gibt es zwei Unterschalen, namlich das 2s-Orbital (n =2, [ = 0)
und die 2p-Unterschale (n =2, [ =1).

Die 2p-Unterschale wiederum besteht aus den folgenden drei 2p-Orbitalen :
2px-Orbital (n=2,1=1 m=1),
2py-Orbital (n=2,1=1, m=-1),
2p,-Orbital (n=2,1=1, m=0).
Beispielsweise hat Stickstoff mit der Ordnungszahl 7 die
Elektronenkonfiguration
2 Elektronen im 1s-Orbital bzw. in der 1s-Unterschale ,
1s2 282 2p° = 2 Elektronen im 2s-Orbital bzw. in der 2s-Unterschale ,
3 Elektronen in der 2p-Unterschale .
Wie man sieht, sind hierbei die hochgestellten Zahlen keine Exponenten sondern
die Anzahl der Elektronen, mit denen die entsprechende Unterschale besetzt ist. 3

Elektronen in der 2p-Unterschale des Stickstoffatoms heifit, das die drei 2p-Orbitale
2px, 2py und 2p, jeweils mit nur einem Spin-up-Elektron besetzt sind.

Alle Orbitale einer bestimmten Unterschale, d. h. alle Orbitale mit gleicher
Hauptquantenzahl n und zusatzlich gleicher Nebenquantenzahl [ besitzen
das gleiche Energieniveau und konnen doppelt besetzt sein. Dieser Sachverhalt
flihrt zu der folgenden Tabelle:

Unterschale 2l + 1 Orbitale maximale Elektronenzahl
auf gleichem Energieniveau

s = [=0 1 s-Orbital 2

p = [=1 3 p-Orbitale 6

d = [=2 5 d-Orbitale 10

f = [=3 7 f-Orbitale 14

g = 1=4 9 g-Orbitale 18

AN . .

In der Physik werden vier Hund’sche Regeln verwendet, insbesondere wenn der Gesamtdrehimpuls J
eine Rolle spielt.
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Die Unterschalen der FElektronenhiillen von Atomen sind beziiglich ihrer
Energieniveaus entartet. Man spricht von Entartung eines quantenmechanischen
Systems wie z. B. einer Unterschale, wenn zwei oder mehr
Zusténde (linear unabhéngige Eigenzustande wie z. B. die Orbitale)

zum selben

Messwert (Eigenwert einer Observablen wie z. B. der Energie)
existieren.? So existieren beispielsweise in der d-Unterschale fiinf d-Orbitale gleicher
Energie bzw. mit dem gleichen Energieniveau der Elektronen, wobei jedes dieser fiinf
Orbitale dem Pauli-Verbot entsprechend mit zwei Elektronen+ unterschiedlichen Spins
besetzt werden kann. In der d-Unterschale kénnen sich also maximal zehn Elektronen
gleicher Energie aber mit verschiedenem Satz an Quantenzahlen aufhalten. Demzufolge
ist die d-Unterschale 10-fach entartet, d. h. sie besitzt den Entartungsgrad bzw. den
Entartungsfaktor 10.3

o Die Elektronen in der &uflersten Schale (Valenzschale) eines Atoms heiflen
Valenzelektronen. Wie bereits dargestellt besitzt beispielsweise Sticktstoff
flinf Valenzelektronen: zwei Elektronen im 2s-Orbital und insgesamt drei Elektronen
in den 2p-Orbitalen 2py, 2py und 2p, . Weil sich die Elektronen der d&uflersten Schale
leichter durch elektrodynamische Wechselwirkungen beeinflussen lassen, sind die Valen-
zelektronen wesentlich fiir die chemischen Eigenschaften der Elemente verantwortlich.

Die duflersten Schalen der Edelgase sind mit acht Elektronen voll besetzt: zwei Elek-
tronen im s-Orbital und insgesamt sechs Elektronen in den drei p-Orbitalen py, py
und p, . Diese Elektronenkonfiguration mit vollstindiger Besetzung aller Schalen heifit
Edelgaskonfiguration. Edelgase sind chemisch besonders stabil. Sie kommen deshalb
nicht in Molekiilform sondern nur atomar vor.

?Man geht mit dem Entartungsbegriff relativ salopp um. So spricht man auch von entarteten Eigenwerten
(Messwerten) und entarteten Zustidnden (Eigenzusténden).

3Siehe: Franz Schwabl, Quantenmechanik (QM I), 6. Auflage, Springer-Verlag, Berlin, Heidelberg, New York,
2002, Tabelle 13.3. Entartungsgrad der ersten Schalen, Seite 252.

15



3.2 Einstein-Koeffizienten und Ubergangswahrscheinlichkeiten

Wir betrachten im Folgenden ein (stationéres) System aus N Teilchen bzw. N Atomen
im thermodynamischen Gleichgewicht mit einem elektromagnetischen Strahlungsfeld
(Photonenfeld, Photonengas oder auch Vakuumfeld) bei konstanter Temperatur 7" und mit
konstantem Volumen V. Ein sich daraus ergebendes praktikables Modell zur Herleitung
der Einstein-Koeffizienten mit den entsprechenden Schlussfolgerungen sind N Atome im
Innern eines Hohlraumresonatars. Dieses Modell ermdoglicht uns die Verwendung der sog.
Maxwell-Boltzmann-Verteilung und des Planck’schen Strahlungsgesetzes:*

Im Wellenbild wird das Photonenfeld innerhalb des Hohlraumresonators durch optische
Eigenschwingungen bestimmter Frequenz v dargestellt. Diese Eigenschwingungen werden
auch Moden genannt und lassen sich durch stehende Wellen veranschaulichen. Die Moden
kénnen quantenmechanisch als harmonische Oszillatoren mit der Energie

1
En:<n—|—2>h1/, n=20,1,2,3, ... (6)

angesehen werden. Dabei ist n die Anzahl der Photonen in der betrachteten Mode. Im
thermodynamischen Gleichgewicht ist die mittlere Anzahl 7 der Photonen pro Mode gleich

dem Bose-Faktor: 1

“hu_
efrT —1

Im Gegensatz zum klassischen harmonischen Oszillator besitzt der quantenmechanische
harmonische Oszillator und somit auch jede Mode fiir n = 0 die Grundzustands- oder
Nullpunktsenergie Fy = %hu. Und aus (6) folgt, dass diese ,Nullpunktsschwingungen*
fiir alle zuldssigen Werte von v existieren.

e Maxwell-Boltzmann-Verteilung

Die klassische Maxwell-Boltzmann-Verteilung besagt, dass in einem System aus N
freien Teilchen bei der Temperatur T im Mittel

E

_ i
N; = K-¢ el

Teilchen jeweils die Energie E; besitzen. Der Proportionalitatsfaktor K = K(T') ist
dabei allgemein eine temperaturabhéngige Konstante.

Beriicksichtigen wir jetzt beziiglich der Maxwell-Boltzmann-Verteilung das
(Elektronen-)Schalenmodell der Atome mit dem sich daraus ergebendem Entartungs-
grad g¢;, d.h. die (maximal mogliche) Besetzungszahl des i-ten Zustands der Energie
FE; mit Elektronen, resultiert das Boltzmann’sche Energieverteilungsgesetz

_ B
Ni o< gi-e *sT

Wie man sieht, ist die Anzahl N; der Atome, die sich im Energiezustand E; befinden,
proportional zum Entartungsgrad g;. Der Entartungsgrad g; ist also das statistische
Gewicht fiir die Zustdnde der Energie E; .

4Erlauterungen zur Maxwell-Boltzmann-Verteilung und zum Planck’schen Strahlungsgesetz sowie die zuge-
horigen Herleitungen finden sich u. a. bei Wikipedia und in meinem Skript
Grundlegendes zur Statistischen Physik — FEnsembles wund Verteilungen in den Abschnitten
11.1 Mazwell-Boltzmann- Verteilung, 13.2 Was ist der Boltzmann-Faktor e~ Pr/(k8T) 18 2 Hohlraumresonator
und Mode — Planck’sches Strahlungsgesetz und 18.6 Strahlungsleistung des schwarzen Kérpers .
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E;
Mit der kanonischen Zustandssumme Z = ). g; -¢ *87, erhalten wir schlielich die
Wahrscheinlichkeit P; fiir das Vorhandensein eines Atoms im Energiezustand F; wie
folgt:

E

Ni(E;) gi-e BT
Pi = = .
N Z
Fiir eine bestimmte Temperatur T' gilt folglich
~ _ B
N K -q;- kT . AE
e 9°¢ 7 9. it AE=E; - (7)
i K-g;-e T 9i

mit dem
AFE

Boltzmann-Faktor e *s87T .

Das Planck’sche Strahlungsgesetz liefert die spektrale Energiedichte w :
81 hv? 1

u(v,T) = i e bzw. (8)
hw3 1
u(w,T) = 53 SeleT) 1 bzw.
87 hc 1
u\T) = N ehe/OsT) _ 1
B (Energie in) J . J-s o kg
[u] = I m3  m-s’

(Volumen in) m3 - (Frequenz in) —

S

Die spektrale Energiedichte entspricht also der Photonendichte pro Frequenzeinheit.
Die Terme m und dessen Aquivalente sind der Bose-Faktor.

Wir werden im Folgenden die spektrale Modendichte G(v) des Hohlraumresonators
verwenden. Diese hingt mit der spektralen Energiedichte auf folgende Weise zusammen:

87 V2 hv
u(v) = B ehw/(ksT) _1 °
—_———
G(V) Emod

Dabei ist F0q die mittlere Modenenergie und die spektrale Modendichte ist

7TV2
Gy = | ()

c3

Schlieflich benoétigen wir auch noch den Zusammenhang zwischen der spektralen
Energiedichte v und der spektralen Strahlungsintensitit

21 hv? 1
I/(l/): ™ nyr _

~u(v) (10)

des schwarzen Korpers bzw. Hohlraumresonators. Die spektrale Strahlungsintensitdt
wird in der Optik auch spektrale Bestrahlungsstirke genannt und besitzt die Mafleinheit

(Fléiche in) m? - (Zeit in) S - (Frequenz in) — m S
S

[I/] _ (Energie in) J J kg
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Wenden wir jetzt die Maxwell-Boltzmann-Verteilung auf die N Atome eines Gases in
einem Raumbereich an, der die Bedingungen unseres anfangs definierten Modells er-
fiillt. Dabei betrachten wir die energetischen Ubergéinge zwischen dem Grundzustand
und dem angeregten Zustand eines Atoms. Wir sprechen in diesem Fall von einem
Zwei-Niveau-System. Den Grundzustand versehen wir mit dem tiefgestelltem Index 1
und den angeregten Zustand mit dem tiefgestelltem Index 2.

Anmerkung

Man kann statt der Teilchenzahl N in einem festen Volumen auch allgemein die Teilchendichte fiir die
Herleitungen verwenden, was aber letztlich zu den gleichen Ergebnissen fiihrt.

Die Gesamtanzahl der Atome ist also N = Nj + Ny mit der Anzahl N; von Atomen im
Grundzustand und der Anzahl Ny von Atomen im angeregten Zustand.

Im thermodynamischen Gleichgewicht ist die Rate der Atome, die durch das Pho-
tonenfeld energetisch angeregt werden, genauso groff wie die Rate der Atome, die ihre
Anregungsenergie wieder abstrahlen. Dabei spielen sich stets gleichzeitig die folgenden, in
der Abbildung 1 veranschaulichten Photonen-Absorptions- und -Emissionsprozesse ab:

o (Induzierte) Absorption

Springen Elektronen mit der Energie E; auf das hohere Energieniveau Eo beim Uber-
gang der zugehorigen Atome vom Grundzustand in den angeregten Zustand durch die
Zufuhr von jeweils einem Photon der Energie hvig pro Atom, so ist mit (7) die Anzahl
der angeregten Atome im Mittel
~ _ Ea
Ny = K-gg-e kT |

Die Anzahl der Atome auf dem 1-ten Energieniveau ist dann Ny = N — N,.
Und wegen FEo > FE; gilt Na < N;. Das Verhiltnis Ny/N; wird auch
relative Besetzungszahl genannt:

Ey

. .e kT Eo—E
&:—K gL-© ]1; :ﬂ-eiBTl7 Ey — E1 = hivyo =
No f{ g - e FpT g2
N — hvyo — hvyo
2 B2t s Ny = Z.NewT | (11)
N g1 g1

Die , Triebkraft* der induzierten Absorption ist das Photenenfeld. Die Ubergangsrate,
d. h. die Anzahl der Atome, die dabei pro Zeiteinheit in diesem Fall energetisch angeregt
werden, hidngt ndmlich von der spektralen Energiedichte u des Photonenfeldes im
Frequenzbereich des Ubergangs ab gemif

dM x u(v)
dt '

AuBlerdem gilt: Je grofler die Anzahl Ny der Atome im Grundzustand ist, desto mehr
Atome konnen in den angeregten Zustand (mit der Elektronenenergie E9) tibergehen

geméf
dNV;
—_— Ny .
a >
Mit dem Proportionalitdtsfaktor By erhalten wir daraus schliellich die
Ubergangsrate

dN1 m
- = —Bs- N B =
() = 2o = el
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Abb. 1 Veranschaulichung a) der induzierten Absorption, b) der induzierten Emission und c) der
spontanen Emission am Beispiel des Ubergangs zwischen dem Grundzustand des Wasserstoffatoms mit
der Elektronenkonfiguration 1s! (Elekronenenergie E1) und seinem ersten angeregten Zustand mit der
Elektronenkonfiguration 2s? (Elektronenenergie F5). Es handelt sich dabei um den Ubergang zwischen L-
und K-Schale aus der Lyman-Serie.

Nach Eugene Hecht, Optik, 4. Auflage, Oldenbourg Verlag, Miinchen, Wien, 2005, Seite 943.

By ist hier der Einstein-Koeffizient fiir die induzierte Absorption und das Minuszei-
chen steht fiir die Abnahme von N .

Der Term Bjs - u besitzt die ,Dimension“ /s und beschreibt die
Wahrscheinlichkeit fiir einen Absorptionsiibergang pro Zeiteinheit
(also fiir ein Atom im Grundzustand bei fester Gesamtzahl N der Atome).

¢ Induzierte Emission

Umgekehrt erfolgt der Ubergang der angeregten Atome in den nicht angeregten Aus-
gangszustand bzw. Grundzustand indem die Elektronen des (hoheren) 2-ten Energieni-
veaus jeweils ein Photon der Energie hisy = hryo abstrahlen und so zuriick in das 1-te
Energieniveau fallen.

Die induzierte (stimulierte, erzwungene) Emission setzt genau wie die (induzierte)
Absorption die Einwirkung eines Photonenfeldes voraus und ist der
Umkehrprozess zur Absorption.
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Mit dem entsprechenden Einstein-Koeffizienten Bs; erhalten wir somit fiir den
Ubergang vom angeregten Zustand in den Grundzustand die Ubergangsrate

dN2 m
aive — —_Boi - N Bl =2
< di >ind.E. o > [Ba] kg

Das aus dem Photonenfeld stammende und die induzierte Emission stimulierende
Photon besitzt ebenfalls die Anregungsenergie hrio und stellt in der Emissionsbilanz
einen ,durchlaufenden Posten“ dar. Es nimmt ndmlich dabei ein Photon der gleichen
Energie hio; = hvis mit. Auflerdem ist es bemerkenswert, dass bei der induzierten
Emission das emittierte Photon

— dieselbe Ausbreitungsrichtung (siche Abbildung 1b),
— dieselbe Frequenz,

— dieselbe Phase und

— dieselbe Polarisation

besitzt wie das stimulierende Photon. Im Wellenbild sind demzufolge die stimulierende
einfallende Welle und die induzierte emittierte Welle koharent. Anders gesagt und
bezugnehmend auf den Hohlraumresonator befindet sich das emittierte Photon in
derselben Strahlungsmode wie die einfallende Welle.

Der Term DBsg; - u besitzt die ,,Dimension“ /s und beschreibt die
Wahrscheinlichkeit fiir einen induzierten Emissionsiibergang pro Zeiteinheit
(also fiir ein angeregtes Atom bei fester Gesamtzahl N der Atome).

Spontane Emission

Bei der spontanen Emission gibt das angeregte Atom vollig statistisch und unabhingig
vom Photonenfeld ein Photon der Anregungsenergie hin; = hi1s mit zufilliger Phase,
zufilliger Polarisation sowie beliebiger Ausbreitungsrichtung ab und fillt dabei in
seinen Grundzustand zuriick. Die Ubergangsrate bei der spontanen Emission hingt
demzufolge nur von der Anzahl N, angeregter Atome ab geméaf

1

dN-
<2> = —A N = [An]=-
dt sp.E. 8

Dabei ist A1 der Einstein-Koeffizient der spontanen Emission.

Der Einstein-Koeffizient As; besitzt die ,Dimension® 1/s und beschreibt die
Wahrscheinlichkeit fiir einen spontanen Emissionsiibergang pro Zeiteinheit
(also fiir ein angeregtes Atom).

Das aber bedeutet, dass die mittlere Dauer, bis ein angeregtes Atom spontan (ohne
auflere Einwirkung) in den Grundzustand tibergeht, durch den Kehrwert von Ag;
bestimmt wird. Diese (mittlere) Lebensdauer eines angeregten Zustands ist also

1
A

T =

Die Lebensdauer 7 eines angeregten Zustands unterliegt der Heisenberg’schen Unschér-

ferelation geméf
r
't = — =h
A

mit der Energieniveaubreite (Spektrallinienbreite) I" (siche Abschnitt 6.1.2).



Quantenelektrodynamisch betrachtet ist die Ursache der spontanen Emission die Null-
punktsenergie. Und die Ursache der Nullpunktsenergie wiederum ist die Heisenberg’sche
Unschérferelation. Die Energie-Zeit-Unschérfe erlaubt namlich einer Mode innerhalb
eines kurzen Zeitintervalls in einen angeregten Zustand und sofort wieder zuriick in
den Grundzustand zu springen. Bei diesen sog. Vakuumfluktuationen werden wvirtuelle
Photonen emittiert, welche angeregte Atome zu ,spontanen Ubergéingen veranlassen
kénnen. Insofern kann man die spontane Emission als eine von Vakuumfluktuationen
induzierte Emission betrachten. Und weil die Vakuumfluktuationen statistischer Natur
sind, ist folglich auch die spontane Emission statistischer Natur.

Waéhrend die Boltzmann-Verteilung von der Temperatur abhédngt, sind die drei Einstein-
Koeffizienten stoffspezifische Konstanten und hingen demzufolge nicht von &ufleren
Faktoren wie beispielsweise der Temperatur ab.

Im thermodynamischen Gleichgewicht muss die Gesamtemissionsrate stets gleich der Ab-
sorptionsrate sein. Das bedeutet, dass sowohl die Anzahl der angeregten Atome als auch die
Anzahl der Atome im Grundzustand zeitlich konstant ist. Wir erhalten demzufolge

dNy dNo
Ni(t) = No(t) = t = — =
1(t) 2(t) = const = T T 0
mit
dNy  [dMV; (AN (AN
de B de ind.A. de ind.E. de sp.E.
= —Bia-Niu+ B - Nau+ A1 - No = 0
und

AN, (dN, (e (AN
de a dt ind.E. de sp.E. de ind.A.

= —Bo1-Nou— A9 -No+Bia-Nyu = 0.

Durch einfache Aquivalenzumformung resultiert daraus schlieflich

Ny Bio-u
Ao1 - No+ Bo1 - Nou = Bia-Niu & —_ = — |. 12
21 2 21 2 12 1 Nl A21+321'u ( )

Aufgrund der Maxwell-Boltzmann-Verteilung ist im thermodynamischen Gleichgewicht

No
N- N- = —<1.
2 < IVq N1<

Wie man an (12) erkennt, ist deshalb die Absorptionwahrscheinlichkeit kleiner als die (Gesamt-
)Emissionswahrscheinlichkeit geméaf

Bis-u < Ag1+ By -u.
Dass trotz kleinerer Absorptionswahrscheilichkeit die Absorptionsrate gleich der
Emissionsrate ist, wird also durch die gréfere Teilchenzahl Ny im Grundzustand gewahrleistet.
Im thermodynamischen Gleichgewicht verhalten sich Teilchenzahl und zugehérige Ubergangs-

wahrscheinlichkeit der verschiedenen Energieniveaus zueinander umgekehrt proportional.
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Gleichsetzen von (12) mit (20) und Auflésen nach w liefert

No _ _Brou 9
N Ann+Bo-u  q1
A 1
u=u() = 2= T (13)
Der Koeffizientenvergleich von (13) mit dem Planck’schen Strahlungsgesetz (8)
81 hv? 1
’LL(V, T) = 63 . ehy/(k;BT) 7
zeigt, dass sich (13) durch die gleichzeitige Anwendung der Beziehungen
81 hv?
A21 = 03 BQl = G(l/) . hl/ . Bgl (14)
und
Biz-g1 = Bai- g2 < By = %312 (15)

in (8) iiberfiihren lasst. Diese beiden Beziehungen beschreiben die Zusammenhénge zwischen
den Einstein-Koeffizienten und gelten fiir alle Frequenzen v und alle Temperaturen T'. Bei
gleichen statistischen Gewichten (Entartungsgraden) ¢g; und go resultiert aus (15)

g1 = g2 = By = B2 =B. (16)

In diesem speziellen Fall sind induzierte Emission und induzierte Absorption gleich wahr-
scheinlich gemi B - u(v) fiir einen Ubergang pro Zeiteinheit.

Betrachten wir jetzt das Verhéltnis von induzierter Emission zu spontaner Emission unter
Beriicksichtigung der spektralen Modendichte G(v) = 8723” : (9) . Mit den Wahrscheinlichkeit
Wina.g. fiir die induzierte Emission und Wpont.g. fiir die spontane Emission erhalten wir
zunachst

1
BQl N G(l/) hl/ " hey
Winag. _ No-Bor-u  Bu-u efsT — 1 (17)
Wpont.E. Ny - Ay Az Aoy '
Wenn wir jetzt Ag; durch (14) ersetzen, so resultiert
W, 1
ind.E. _ _ ) (18)
Wspont.E. e*BT _ 1

Wie man sieht, verschiebt sich das Verhéltnis von induzierter zu spontaner Emission mit
zunehmender Temperatur 7' und bei fester Frequenz v zugunsten der induzierten Emission,
sodass letztere bei hohen Temperaturen klar iiberwiegt. Zum gleichen Ergebnis kommen wir,
wenn wir von der spektralen Strahlungsintensitét (10)

2rhvd 1

2 hv
(&
efsT —1

I'(v) =

des Hohlraumresonators ausgehen und mit der spektralen Energiedichte u vergleichen. Denn
wie wir unter Beriicksichtigung von (14) und mit (16) feststellen konnen, sind I’ und u
proportional geméaf

c ¢ 8mhu? 1 c Aoy 1
I/(Z/) e 7’1,1,(1/) = - . 3 e — - T , 91:92
4 4 & oFBT _ 1 4 B oFBT _ 1
= const
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3.3 Die Idee zum Funktionsprinzip des Lasers

Bei der Beschreibung der Idee zum Funtionsprinzip des Lasers folgen wir der Argumentation
von M. Alonso und E. J. Finn.?

Das Kunstwort ,,Laser bedeutet
,Light Amplification by Stimulated Emission of Radiation®
Sinn und Zweck des Lasers ist es, bei kontinuierlicher Zufuhr von Energie in das System
,Laser* eine moglichst kontinuierliche Nettoemission von kohéarenter elektromagnetischer
Strahlung bzw. von Photonen aus dem System heraus zu erzeugen. Das bedeutet, dass ein
Laser nicht im thermodynamischen Gleichgewicht ,arbeitet*.
Sind Strahlung und Materie im thermodynamischen Gleichgewicht, gilt fiir unser Zwei-

Niveau-System im Hohlraumresonator im Fall g¢; L go = Boy =Bio=0B:
Emissionsrate = Absorptionsrate
Boi - u(v) Ny + A1 Ny = Big-u(v) Ny
[B-u+ A21]N» = B-uN; =

Emissionsrate _ <1 Az > N -1 |. (19)

Absorptionsrate B-u) N,

Ist die Differenz Ey — E1 = hv zwischen den beiden Niveaus jedoch hinreichend klein, so
folgt mit (17) und (18) aus (19)

Emissionsrate No

~ 20
Absorptionsrate Ny’ (20)
denn
Wspont.E. _ A21 _ ek}];VT 1 hgo A21 Y
Wind.E. B-u B-u

Das bedeutet: Wenn im thermodynamischen Gleichgewicht Ey nur geringfiigig grofler ist als
FEy, dann ist Ny nur geringfiigig kleiner als N1, wobei die Emissionsrate selbstverstiandlich
immer noch gleich der Absorptionsrate ist. Eine Netto-Emission bzw. Lichtverstarkung ist
demzufolge im thermodynamischen Gleichgewicht (bis zum Grenzfall % = 1) nicht mdglich.

Eine Netto-Emission ist also nur im thermodynamischen Ungleichgewicht mit einer
Besetzungsinversion, d. h. mit einer relativen Besetzungszahl % > 1 zu erwarten. Aus
(20) folgt dann namlich

No > N; = Emissionsrate > Absosrptionsrate .

Diese Besetzungsinversion erreicht man, indem man Atome aus dem Grundzustand (E7) durch
Zufuhr von Energie bzw. Photonen geeigneter Energie in einen angeregten Zustand ,,pumpt®
Im Fall des Zweiniveaulasers handelt es sich bei diesem angeregten Zustand gleichzeitig um das
obere Laserniveau (F5). Weil Zweiniveaulaser nicht kontinuierlich arbeiten, muss man dafir
sorgen, dass durch optisches Pumpen kontinuierlich Atome auf ein Niveau angeregt werden, das
oberhalb des oberen Laserniveaus liegt. Im Fall eines Dreinivealasers ware dies der angeregte
Zustand (E3). Der Ubergang der angeregten Atome (Fj3) in den Grundzustand erfolgt dann
zumindest teilweise tiber die Zwischenstufe, den metastabilen (langsam zerfallenden) Zustand
(E2) bzw. das obere Laserniveau, wodurch sich dann dauerhaft hohe Besetzungszahlen
N5 > Ni mit der daraus resultierenden Netto-Emission realisieren lassen.

5Marcelo Alonso und Edward J. Finn, Quantenphysik und Statistische Physik, 4. Auflage, Oldenbourg
Verlag, Miinchen, Wien, 2005, Seite 577 bis Seite 579.
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4 Brechungsindex und das Verhalten von Licht an

24

Grenzflachen

¢ Brechungsindex-Definition:

Fiir die Ausbreitungsgeschwindigkeit oder exakt die Phasengeschwindigkeit von elektromagnetischen
Wellen wie z. B. Licht gilt:
co = const Vakuumlichtgeschwindigkeit, physikalische Fundamentalkonstante ,

c Phasengeschwindigkeit in einem Medium mit dem Brechungsindex n .
. co 1 1
Brechungsindexn = — & c¢=c¢(n)=c—- = cx—, co>c = n>1.
c n n

Um die Phasengeschwindigkeit im Vakuum von der in Medien zu unterscheiden, sind verschiedene
Indizierungen iiblich. Oft wird die Geschwindigkeit im Vakuum nicht indiziert und die Geschwindigkeit
in Medien gestrichen.

Reflektion und Transmission dndern nicht die Frequenz f bzw. die Kreisfrequenz w = 27 f der
einfallenden elektromagnetischen Wellen, auch wenn sich bei der Transmission der Brechungsindex
andert. Die Anderung des Brechungsindex hat nur eine Anderung der Wellenlinge A bzw. eine Anderung

der Wellenzahl k£ = 277 zur Folge und damit auch eine Anderung der Lichtgeschwindigkeit (im Medium):

c=—=A-f= o co =const, w =const =
w
E=kn)=—-n = kxn.
Co
Zusammenhang zwischen Permittivitat, magnetischer Permeabilitdt und Brechungsindex:

€ = & -€0 mit

€ Permittivitdt des Mediums,
er relative Permittivitdt (Permittivitidtszahl) des Mediums, dimensionslos,

eo elektrische Feldkonstante (Dielektrizitdtskonstante).
W= fr-po it
©  magnetische Permeabilitdt des Mediums,

ur  relative magnetische Permeabilitit (Permeabilitdtszahl) des Mediums, dimensionslos,

po  magnetische Feldkonstante (magnetische Permeabilitdt des Vakuums).

Im Vakuum gilt e; = pr = 1. Der Brechungsindex eines Mediums ergibt sich aus seiner Permittivitit
und seiner magnetischen Permeabilitat wie folgt:

1
Co =
V€0 Mo
1 = n = /€ tr .

NeT

Reflektion:

Licht falle in das Medium I mit dem Brechungsindex n; ein, treffe dann auf die Grenzfliche zum
Medium IT mit dem Brechungsindex ns und werde dann in das Medium I reflektiert. Allgemein wird
das einfallende Licht nicht vollstéandig reflektiert, sondern es wird bei bestimmten Gegebenheiten
auch durch die Grenzfliche in das Medium II hinein transmittiert, z. B. bei der Lichtbrechung an
Grenzflachen. Betrachten wir den innerhalb des Mediums I auf die Grenzflache einfallenden Lichtanteil
und den von der Grenzflache reflektierten Lichtanteil, so ergeben sich fiir die Reflektion zwei Félle:

n1 <n2 = Aauflere Reflektion,
ni1 >ns = innere Reflektion.
Die vollstédndige innere Reflektion nennt man auch kurz Totalreflektion.
Grenzwinkel o der Totalreflektion:

Beim Lichtiibergang an einer Grenzfliche von einem Medium mit gréflerem Brechungsindex n; in ein
Medium mit kleinerem Brechungsindex na ,

ni > nz,

wird das Licht mit dem Ausfallswinkel as vom Ausfallslot weg gebrochen, wenn der Einfallswinkel o
den Grenzwinkel der Totalreflektion ag nicht tiberschreitet.



Der Grenzwinkel der Totalreflektion ist der zum Ausfallswinkel aa = 90° korrespondierende
Einfallswinkel oy = o :
n2

. . . o . .
nisina; = ngsinaz =n2sin90” =n2 & sina; =sinag = — ,
n1

. . )
Grenzwinkel der Totalreflektion ag = arcsin —, ni >ns |,
ni

d.h., die Totalreflektion an der Grenzfliche tritt ein bei einem Einfallswinkel a; entsprechend
sin aip > %
Evaneszentes Wellenfeld — optischer Tunneleffekt (siehe Abschnitt 5).

Brewsterwinkel:

Der Grenzwinkel der Totalreflektion darf nicht mit dem Brewsterwinkel oder Polarisationswinkel
ap verwechselt werden. Dieser spielt bei der Reflektion eine Rolle, die beim Lichtiibergang von einem
optisch diinneren Medium mit n; in ein optisch dichteres Medium mit ns auftritt, und muss die
Bedingung

aq +a2£90° & ap=ag = az=90°—ap

erfiillen. Dabei ist a1 sowohl der Einfallswinkel als auch der Reflektionswinkel und a2 ist der Bre-
chungswinkel. Das Snellius’sche Brechungsgesetz liefert schliefilich
No sin ap

. . . . o
nisinan = nisinag = nesinaz = n2sin(90° — ag) = npcosap = — = =tanag ,
ni COS B

. n2
Brewsterwinkel ap = arctan — , nj; < neo
ni

Trifft unpolarisiertes oder zirkular polarisiertes Licht mit dem Einfallswinkel ag auf eine Glasoberfléche,
so wird nur der senkrecht zur Einfallsebene (Ein-Ausfallsebene) polarisierte Anteil oder die senkrecht zur
Einfallsebene polarisierte Komponente des Lichts reflektiert, weil die Abstrahlung elektromagnetischer
Wellen nur senkrecht zum Dipol und nicht in Dipolrichtung erfolgt.

Auch bei der Beschreibung der Reflektion von elektromagnetischen Wellen an Metalloberflichen spielt
der Brechungsindex ein Rolle. Allerdings ist er dann komplex, also n(A) € C, wobei sein Realteil
durchaus kleiner als 1 werden kann.
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5 Evaneszentes Feld — (Goos-Héanchen-Verschiebung

Quellen

Wolfgang Demtrdder, Springer-Lehrbuch Experimentalphysik 2, Elektrizitdt und Optik, Springer-Verlag,
Berlin, Heidelberg, New York, 3. Auflage, 2004, Abschnitt 8.4 Wellen an Grenzflichen zwischen zwei Medien,
Seite 228 bis Seite 231.

ChemgaPedia, Optische Grundlagen der Sensorik — Das evaneszente Feld,
http://www.chemgapedia.de/vsengine/vlu/vsc/de/ch/13/v1u/sensorik/opt_grundlagen.vlu/Page/vsc/
de/ch/13/pc/sensorik/optik/evaneszent.vscml.html

Wird beim Ubergang des Lichts an der Grenzfliche von einem optisch dichteren Medium I
(mit dem Brechungsindex n1) zu einem optisch diinneren Medium II (mit dem Brechungsindex
ny < ny) der Grenzwinkel ag der Totalreflexion erreicht bzw. iiberschritten, so tritt innere
Totalreflexion ein, die kurz Totalreflexion genannt wird.

,, Goos und Hénchen stellten in Experimenten zur Totalreflexion fest, dass der
reflektierte Strahl nicht am Ort des Auftreffens, sondern erst etwas versetzt
zurucklauft.

Mit der Annahme, dass das Licht etwas in das optisch diinnere Medium eindringt,
ldsst sich dies mit Hilfe der geometrischen Optik verdeutlichen.
Abb.1 Goos-Hanchen-Verschiebung

Offenbar fillt das elektromagnetische Feld der totalreflektierten Welle an
der Grenzfliche nicht abrupt auf Null ab. Das folgt aus den Stetigkeits-
bedingungen fiir das elektromagnetische Feld bei Totalreflexion vom op-
tisch dichteren ins optisch diinnere Medium. Fiir a; > ag entsteht eine
entlang der Grenzfliche propagierende Welle, die exponentiell mit der Ein-
dringtiefe geddmpft wird. Diese Welle im optisch dinneren Medium wird als
evaneszentes Feld bezeichnet. Der Abklingfaktor beschreibt, wie weit das
evaneszente Feld in das optisch diinnere Medium eindringt: ... nur stromt keine
Energie iiber — durch die Grenzfliche hindurchtretende Energie stromt direkt
wieder zuriick. Gibt man der Strahlungsenergie allerdings innerhalb der Eindring-
tiefe die Moglichkeit zur Wechselwirkung, kann sie zuriickgehalten werden, z. B.
durch Absorption, Anregung von Fluoreszenz oder durch ein weiteres Prisma
oder einen Wellenleiter, in dem das Licht propagieren kann. Man bezeichnet dies
als abgeschwiichte Totalreflexion bzw. frustrierte Totalreflexion.*!

Das evaneszente? Feld fithrt also bei Totalreflexion keine Energie iiber das optisch diinnere
Medium IT ab.?

Fiihren wir jedoch ein drittes und wieder optisch dichteres Medium III (mit dem Bre-
chungsindex n3 > no) mit seiner Grenzflache in das evaneszente Feld hinein, dann dringt das
evaneszente Feld in dieses Medium ein und transportiert fortwéahrend Energie in Form von
elektromagnetischen Wellen (Licht) in das Medium III. Um diesen transmittierten Lichtanteil
reduziert sich der innerhalb des Mediums I reflektierte Lichtanteil, sodass wir dann nicht
mehr von Totalreflexion sprechen, sondern nur noch von frustrierter Totalreflexion — auch
abgeschwiichte, verhinderte oder gestérte innere Totalreflexion genannt.* Folglich lisst sich
das urspriinglich einfallende Licht durch entsprechende optische Vorrichtungen aufteilen in
einen reflektierten und einen transmittierten Anteil (Strahlenteiler).

Die bei frustrierter Totalreflexion auftretende Transmission elektromagnetischer Wellen
vom Medium I — durch die Barriere des optisch diinneren Mediums II — hinein in das

!Zitiert aus: ChemgaPedia, Optische Grundlagen der Sensorik — Das evaneszente Feld.

2Evanescere (lat.) bedeutet verschwinden, sich verfliichtigen.

3Dies gilt auch allgemein fiir die vollstindige Reflexion an Grenzflichen zwischen zwei Medien.

“Im Zusammenhang mit der Transmission bei frustrierter Totalreflexion spricht man auch von einer Aus-
kopplung des evaneszenten Feldes.
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Medium III 14sst sich quantenphysikalisch und v6llig analog zum Tunneleffekt erkléren (siehe
Abschnitt 6.1 in meinem Skript: Quantenmechanik — Schrédinger-Gleichung — Tunneleffekt).
Man bezeichnet dieses Phdnomen deshalb auch als den optischen Tunneleffekt.

Bei quantenphysikalischer Interpretation entspricht dort das Medium I dem Gebiet I, das
Medium IT dem Gebiet II, d. h. der Potentialbarriere, und das Medium III dem Gebiet I1I. Im
klassisch nicht erlaubten Gebiet II (Medium II) ist demzufolge der Wellenvektor bzw. dort
die Wellenzahl k£ komplexwertig, ndmlich k =ik, x € R. Dadurch wird der komplexwertige
Exponent der einfallenden Welle (Wahrscheinlichkeitsamplitude) beim Ubergang in das
Gebiet II reell und es resultiert eine abklingende Exponentialfunktion, vollig analog zum
evaneszenten Feld:®

Up(z)=A- " = Wy(z)=C. 0T =7

Die folgende Plausibilisierung des evaneszenten Feldes erfolgt im klassischen Wellenbild.
Fiir den Betrag von Vektorkomponenten beispielsweise ‘Elﬂ schreiben wir kurz Eqr . Zur
Vereinfachung und ohne Einschrinkung der Allgemeinheit drehen wir das kartesische Koordi-
natensystem so, dass die Einfallsebene des Lichts mit der Ebene := (z,y, z=0) zusammenfallt
und gleichzeitig die Grenzflache zwischen den Medien I und II in der Ebene:= (x, y=0, 2)
liegt (siehe Abbildung 2). Folglich und wie wir gleich sehen werden, liegt dann sowohl der
Wellenvektor k; als auch dessen Tangentialkomponente k;7 von einfallendem, von reflek-
tiertem und von transmittiertem Licht in der Ebene:= (z,y,0). Alle Grofien im Medium
I indizieren wir mit 1 und alle Gréflen im Medium II mit 2. Groéflen, die sich auf das re-
flektierte Licht im Medium I beziehen, versehen wir zuséatzlich mit einem Strichindex. Die
Tangentialkomponenten der elektrischen Felder und der Wellenvektoren bzw. Wellenzahlen
erhalten den Index T, weil sie tangential zur Grenzfliche verlaufen.

E, .
Medium |
B n1
: z. B. Glas
~. o9
\\\/ ‘k1 5
e ! Totalreflexion
T Nk, X
Medium |l 1 R
AN
n, "
z. B. Luft E,
ny<n, y

Abb. 2 Die ebene Welle El trifft im Medium | mit dem Brechungsindex n; > no auf die Grenzflache
zum Medium Il mit dem Brechungsindex ny. Die transmittierte ebene Welle ist dann Eg. Die Grenzflache
ist die Ebene, die von den z, x-Koordinatenachsen aufgespannt wird. Die El—EinfaIIsebene und die Eg-
Ausfallsebene liegen in der Ebene der x, y-Koordinatenachsen, sodass die y-Achse das Einfalls- und das
Ausfallslot bildet. Wie man sieht, sind die Komponenten k1, von k1 und kog von EQ gleich lang. Hingegen
ist der Wellenvektor Eg kiirzer als der Wellenvektor El, weil die Wellenlange im Medium mit dem kleineren
Brechungsindex ny groBer ist als die Wellenldnge im Medium mit dem groBeren Brechungsindex n.

°Zur Herstellung der Analogie zwischen elektromagnetischen Wellen und den quantenphysikalischen
Wahrscheinlichkeitsamplituden setzen wir im Exponenten der elektromagnetischen Wellenfunktion ¢t = 0:

E(x,t) = A-ellke=wt) = E(z,0) = A- '™,
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Wir betrachten die drei ebenen Wellen

El = A'l -ei(Elf_wlt) einfallendes Licht ,
E| = A\ .1 peflektiertes Licht

Eg = A} . gl(kaT—wat) transmittiertes bzw. gebrochenes Licht .

Aus der Stetigkeit des FE-Feldes an Grenzflichen folgt, dass die Tangentialebene des
E-Feldes auf der Einfallsseite der Grenzfliche (Medium 1), also die Summe Ejp + Efp der
Tangentialkomponenten des E-Feldes von einfallendem und reflektiertem Licht, gleich sein
muss der Tangentialkomponente For des E-Feldes auf der Ausfallsseite der Grenzfliche
(Medium II):

Eir + EiT = FEor. (21)

Betrachten wir jetzt die drei Tangentialkomponenten in dem festen Raumpunkt # = 0, so
erhalten wir
EiT _ AiT .el(k’iT-Ofwit) _ AiT .eflwit =
Ayp - e~ lwit + A/IT . e—iwit = Aoy - e~ lwat
Diese Gleichung muss fiir beliebige Zeiten t gelten und hat deshalb nur dann nichttriviale
Losungen, wenn

W =W = w = w . (22)

Beim Ubergang einer elektromagnetischen Welle in ein Medium mit anderem
Brechungsindex kann sich nur die Wellenlange &ndern. Die Frequenz bzw. Kreis-
frequenz dndert sich dabei nicht.

Die Bedingung (21) gilt fiir beliebige Punkte 7 der Grenzflache. Deshalb miissen die Phasen
der drei Wellen Er, E{ und Eat in jedem Punkt 7 der Grenzfliche gleich sein:

k17 —wit = K7 — Wit = kot — wot .

Unter Berticksichtigung von (22) folgt daraus die wichtige Beziehung

ki-7 = k-7 = ko7 |. (23)

Da der Wellenvektor El in der Einfallsebene, d.h. in der (z,y,0)-Ebene liegt und 7 in der
Grenzflache, d. h. in der (z,0, z)-Ebene, erhalten wir in Komponentendarstellung

ky = ki €, + k1 €, , =1 +2€E,. (24)

Und weil die Richtungen der Wellenvektoren Ei und ks noch unbekannt sind, machen wir
den allgemeinen Ansatz

k) = k|,€, + K, €, + ki€ ,
. (25)
ko = kog€, + kgyéy + ko€, .

Einsetzen von (24) und (25) in (23) liefert die Gleichung

kizx = kiggm + kzizz = kogx + korz .
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Diese Gleichung muss fir beliebige Werte « und z der Grenzfldche gelten, woraus folgt:

,122/{2220 =

kiz = ki, = koo |- (26)

Die Wellenvektoren der einfallenden, der reflektierten und der gebrochenen Welle
liegen in der Einfallsebene.

Der Abbildung 2 entnehmen wir

klz:|E1|-sina1:k1~sina1:n1£-sino¢1, (27)
co

’ " . ’ ’ . ’ ;W . ’
kiz = |k1| -sina] = k] -sina) =n; — -sina ,
Co

- . . w .
koz = |k2| - sinag = k2 - sinae = n2 — -sinas . (28)
Co
Mit (26) folgt daraus einerseits
’ ’ w . w . ’
kiz =kiz N ni=n; = nlc—-smal :mc—-smal =
0 0

sina; =sine; = a3 =a}), Einfallswinkel gleich Reflexionswinkel

und andererseits

w . w .
kic = ksz = ni— -sinag =ne — -sinas =
Co Co

Snellius’sches Brechungsgesetz n; -sina; =ng -sinas .

Der Betrag des Wellenvektors Eg der transmittierten Welle Eg ist

= w /
‘k:g‘ = kg = 77,2% = k%x—i-k%y.

Quadrieren dieser Gleichung und Umstellung nach kgy ergibt

2
w
k2, = (no— ) — K3, .
2y o 2x

Setzen wir jetzt geméf (26) und (27) k3, = ki, ein, so erhalten wir die Funktion kg, (),
also die Abhéngigkeit der y-Komponente des Wellenvektors der transmittierten Welle vom
Einfallswinkel:

w ) w \ w ) n?
k‘gy = (ng—) —(n—) -sin®aq = (ny— ) - 17—; sinaq | .
Co Co Co ny
—_——

Der erste Faktor k‘% auf der rechten Seite dieser Gleichung ist positiv. Wie aber verhélt sich
der zweite Faktor in Abhéngigkeit vom Einfallswinkel o;?
Wenn der Einfallswinkel oy gleich dem Grenzwinkel der Totalreflexion o ist, also

. . n2 )
sina] =sinag = — = sin“ag =
ni

)

2
na
2
ni
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verschwindet der zweite Faktor, sodass, wie fiir a; zu erwarten war, kg, = 0 resultiert. Wenn
aber der Einfallswinkel grofler ist als der Grenzwinkel der Totalreflexion, also

2
. . ) ny
sina; >sinag = sin“a; > 5,
ny
so wird )
n .
—; sin? a; > 1
n
2

und der zweite Faktor wird negativ:

”% 2 2
<1—281n a1> = —p° < 0.

ny

Daraus folgt fiir die y-Komponente von Eg:

2 2
w n
o= () (-1 (M sin?a—1) =
2y (ng Co) (-1) (n% sin”

\—v—/ J/
=k2 =32
n2
koy = L£ko-i- %SiHQOAl—l,
ny
=B
k‘gy = ﬂ:ikgﬁ fur a1 > Qg . (29)

Jetzt setzen wir die positive Losung von (29) in die transmittierte ebene Welle E, ein:

— —

E,=A,- ei(EgF—wt) _ A’Q . ei(kgz-x+k2y~y—wt) _ A’Q . ei(kgzﬂc—&-ikgﬂy—wt) -

evaneszentes Feld E, = A, . ¢ Pk2lul . gilhasz—wt) ;o> Qg

Dampfung  Oszillation

Wie man sieht, oszilliert das evaneszente Feld in xz-Richtung und mit der Zeit. Es ist also
eine sich langs der Grenzfliche ausbreitende Longitudinalwelle und wird deshalb auch
evaneszente Welle genannt. Gleichzeitig wird das evaneszente Feld in y-Richtung exponentiell
gedampft, d. h., das transmittierte Feld ,verfliichtigt® sich exponentiell mit zunehmendem
Abstand |y| von der Grenzfléche.

AbschlieSend berechnen wir aus dem Dampfungs- oder Abklingfaktor den Abstand |y| fiir
die Abschwichung von E-Feld und Intensitiit auf 1/e ~ 1/3 der urspriinglichen Gréfe:5

FE-Feld:

1
e Bkl L2 o (e_ﬂk?'y‘) = Bhy-lyl=lnet=-1 = |yl pka=1 <

¢}

vl = 15

Die Intensitat I einer ebenen Welle ist proportional zum Betragsquadrat des E-Feldes:

[O<<A2.e—5kz~|y|>2 L 2Rl L1
e

Wi = ——
Yase) = TN

6 e=2718...
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Beispiel
Wie grof ist der Abstand |y(r/e)| bei einer Glasplatte in Luft fiir griines Licht?

co=3-10°ms™" R
f=600THz = 6-10""s™" (griines Licht) =
w=2r-6-10"s"",
n1=1,5 (z.B. Glas) ,
n2 = 1,0 (Vakuum oder ndherungsweise Luft) ,
a1 =75 = sina1 ~0,966 = sin’a1 ~ 0,93,
ag 2 42° < sinag =na2/n1 =1/1,5=10,6.
1 1 1
[Y(r/e)| = kB ~ ;

2 1-27-6-1014 51 1,52

now n ) ESEYINAOLE LS e - N 2907 —

2—;0 —né sin“aq — 1 2 3108 ms—1 0,93 -1
2

‘y([/e>| %3,8 10_8111: 38nm .

Der Abstand von der Glasplatte, bei dem die Lichtintensitit bzw. die Intensitéit des evaneszenten Feldes
ndherungsweise auf 1/3 der urspriinglichen Intensitat abgefallen ist, betriagt in diesem Fall ca. 38 nm. Dieser
Abstand ist ungefahr eine Gréflenordnung kleiner als die Wellenldnge des verwendeten Lichts.

y
e i abgeschwachte
7 i Totalreflexion
p :
; D :
Medium | A e :
n -
! ~ AX
T X
Medium Il |y(E/e)|
Ny, Ny<n,
Medium IlI
Ny, N3>n,

Transmission

Abb. 3 Goos-Hanchen-Verschiebung Az bei frustrierter bzw. abgeschwachter Totalreflexion. Gelegentlich
wird D = Ax cos o1 als Goos-Hanchen-Effekt bezeichnet.

Weil das Feld des einfallenden Strahls trotz Totalreflexion ein wenig in das Medium II eindringt,
verlagert sich der Reflexionspunkt ebenfalls von der Grenzfliche ein wenig in das Medium
IT hinein. Er liegt dann konventionsgeméaf etwa in der Ebene, in der die Feldstérke auf 1/e
abgefallen ist. Der reflektierte Strahl durchdringt dann aber die Grenzfliche ndherungsweise
um eine Strecke Az, die Goos-Hénchen-Verschiebung, gegeniiber dem einfallenden Strahl
versetzt (siche Abbildung 3):

1
Ax ~ 2- -t = 2—1t .
x [Y(E/e)| - tan ay T an o (30)
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Far k9 schreiben wir

2 2 1 A
hy= oy = L 2 me L Ao
(&) Co )\0 k‘Q 271"!22

wobei \g die zur Frequenz f gehérende Vakuumwellenldnge ist. Auflerdem formen wir den
Term S zur Vereinfachung noch etwas um:

Damit ist

1 2o 1 2o

kQB 2mny n1 102 n2 > P2 n2 2
—/sin“a; — | 2 2mni4/sin® o — o
n2 1 1

Dies setzen wir in (30) ein und erhalten so die

)\g -tan aq
_ 2
w4/ sin? oy — (%’)

Wie man sieht, ist die Goos-Hénchen-Verschiebung proportional sowohl zur Wellenlénge als
auch zum Einfallswinkel bzw. Reflektionswinkel:

Goos-Hénchen-Verschiebung Az =

Az o< A, Ar < g .
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6 Die Kohirenz des Lichts
6.1 Wellenpaket — Wellenzug — Superpositionsprinzip

6.1.1 Teilchenbild

Im Teilchenbild bzw. Photonenbild ist natiirlich ausgestrahltes Licht, das durch sponta-
ne Emission entsteht wie beispielsweise das thermische Licht einer Glithfadenlampe, ein
,Gemisch® aus Photonen verschiedener Energie und verschiedener Ausbreitungsrichtung.
Photonen sind Bosonen und kénnen quantenphysikalisch in Raum und Zeit als (rdumlich
,begrenzte“) Wellenpakete (Wellengruppen) beschrieben werden, die der Heisenberg’schen
Energie-Zeit-Unschérfe gehorchen miissen.

Ein Photon mit der Energie hv in Gestalt eines Wellenpakets beispielsweise 1(t) oder

E(t) ist die Superposition von unendlich vielen harmonischen Funktionen verschiedener
Periode (deshalb auch die Bezeichnung Wellengruppe) mit der Amplitudenmodulation dieser
Wellengruppe durch eine Einhiillende (z. B. eine Gau-Funktion oder eine Lorentz-Funktion).
Die Fourier-Transformierte F'(w) des Wellenpakets ist dessen kontinuierliches Frequenz-
spektrum mit der Halbwertsbreite Aw um die mittlere Kreisfrequenz wy = 2m1y, die an
der Stelle des Maximums der Funktion der Fourier-Transformierten liegt. Jedes Wellen-
paket besitzt demzufolge ein kontinuierliches Frequenzspektrum und an einem festen Ort
die ,Lebensdauer® At. In Ubereinstimmung damit und auch in Ubereinstimmung mit der
Heisenberg’schen Energie-Zeit-Unschérferelation gilt:
Aus der raumzeitlichen Beschranktheit der Wellenpakete folgt eine Frequenzstreuung und
damit eine natiirliche (unvermeidbare) Linienbreite im Frequenzspektrum. Genauer gesagt:
Je langer die Lebensdauer At eines Photons ist, desto schmaler ist sein Frequenzspektrum
bzw. desto kleiner ist die Halbwertsbreite Aw und umgekehrt. Je grofler At ist, desto schérfer
ist die zugehorige Spektrallinie. Deshalb besitzt das Frequenzspektrum eines Lasers eine
besonders kleine Linienbreite.

6.1.2 Wellenbild

Im Wellenbild ist natiirlich ausgestrahltes Licht im Allgemeinen eine Uberlagerung von
statistisch (zuféllig) verteilten elementaren sinusférmigen Transversalwellenziigen (kurz:
elementaren Wellenziigen) verschiedener mittlerer Kreisfrequenz wy = 271y, verschiedener
Polarisation, verschiedenem Phasenwinkel ¢ (kurz: verschiedener Phase ¢) und verschiedener
Lebensdauer At an einem festen Ort entsprechend einer verschiedenen rdumlichen Linge
c- At.

Wie Wellenbild und Teilchenbild so sind auch elementare Wellenziige und Photonen kom-
plementér, das heifit, ein Photon und der ihm entsprechende elementare Wellenzug sind zwei
sich gegenseitig ausschlieflende Erscheinungsformen derselben physikalischen Realitdt. Anders
gesagt, je nach Beobachtungsmethode besitzt Licht entweder Teilchen- bzw. Photonencha-
rakter oder Wellencharakter. Dieser Sachverhalt wird auch als Welle-Teilchen-Dualismus
bezeichnet.

Emittiert werden elementare Wellenziige beispielsweise durch elektronische Uberginge, also
wenn Elektronen einer Strahlungsquelle von einem héheren in ein niedrigeres Energieniveau
springen bzw. wenn Teilchen wie beispielsweise Atome von einem angeregten in einen weniger
angeregten oder in den Grundzustand iibergehen. Die Dauer dieser elektronischen Uberginge
bzw. Emissionsvorgéinge betrigt etwa 1071%s bis 1078 s, liegt also in der GréBenordnung
um At = 107”s = 1ns entsprechend einer Linge der elementaren Wellenziige von etwa
¢+ At = 30cm . In Abhéngigkeit von der Emissionsdauer und von der Wellenldnge besitzen
dann die elementaren Wellenziige etwa einhunderttausend bis zu vielen Millionen Perioden.

Die angeregten Zustéinde besitzen die mittlere Lebensdauer At = 7., die unmittelbar
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zusammenhéngt mit der mittleren Lebensdauer der elementaren Wellenziige.!

Es gilt ndmlich: ,,Die Breite einer Spektrallinie, die einem geddmpftem Wellenzug des
einzelnen Emissionsaktes entspricht, ist gleich der reziproken Lebensdauer des angeregten
Zustandes. Diese Beziehung gilt ganz allgemein, gleichgiiltig ob der Strahlungsprozefl durch
Diampfung oder anders abgebrochen wird.*“? Das heifit aber, dass sich die Halbwertsbreite
Aw einer Spektrallinie um die mittlere Kreisfrequenz wg reziprok verhélt zur mittleren
Lebensdauer 7 des zugehorigen elementaren Wellenzuges gemaf

1
Te — E <~ AW'Tc—l . (31)

Diese Beziehung heifit spektrale Kohidrenzbedingung und wird oft auch in der schwécheren
Form
Aw 1752 & Av-1.51

~

verwendet. Sie erfiillt die Heisenberg’sche Energie-Zeit-Unschérferelation, denn

AE-At = hAw - 7. > g = Aw‘Tc:1>%.

Wir zeigen eine Herleitung der Beziehung (31) nach dem

Springer-Lehrbuch Physik kompakt 8 — Quantenphysik und Statistische Physik
von Gunnar Lindstrém, Rudolph Langkau und Wolfgang Scobel, 2. Auflage, Springer-Verlag, Berlin, Heidelberg,
New York, 2002, Abschnitt 5.8 Beispiel zur Energie-Zeit-Unschirfe (Resonanz angeregter Atomzustande),
Seite 68 bis Seite 77 :

Ein Atom im angeregten Zustand verhilt sich wie ein Resonator. Wir erfassen dessen Zustand durch die
Wellenfunktion bzw. die Wahrscheinlichkeitsamplitude ¢ (t), die charakterisiert wird durch die Eigenfrequenz
wo des Zustands und durch die Dampfung bei spontaner Emission von elektromagnetischer Energie
AFE = hAw in ,,Gestalt“ eines Photons. Erfolgt diese Emission ab dem Zeitpunkt ¢ = 0, so beschreibt die
Wellenfunktion die L

freie gedimpfte Schwingung (t) = Ae 2“0t (32)

Hierbei ist 7 die mittlere Lebensdauer des angeregten Zustands. Die Momentanamplitude der emittierten
elektromagnetischen Strahlung soll proportional zur Wellenfunktion 1 (t) sein, sodass die Intensitat I(¢) der
Strahlung proportional zur Wahrscheinlichkeitsdichte 1* fiir die Emission eines Photons ist:

_ 1y

I(t) < Y™y = (Aefﬁtefi“’ot) . (Aefﬁteiwot) = A%e % =

I(t) = Ipe %", (33)

(33) bedeutet aber auch: Befinden sich No Atome zum Zeitpunkt ¢ = 0 im angeregten Zustand, so sind es

zum Zeitpunkt ¢ nur noch N(t) = No -e~ %" und nach Verstreichen der mittleren Lebensdauer des angeregten
Zustands schlieflich N(7.) = % - Nop.

Nach Fourier lisst sich die Wellenfunktion (32) durch Uberlagerung von unendlich vielen harmonischen
Schwingungen F' verschiedener Frequenz w, also als Fourier-Integral darstellen:

1 .
P(t) = %/F(w)e'wt~dw, w>0.
0
F(w) ist die Fourier-Transformierte bzw. die Spektralfunktion von ¢(¢) und hat die Gestalt

F(w) = /w(t) e . dt wegen Y(t) =0 fiir t<0.
0

Wir verwenden bei 7. hier bereits den Index ¢, weil sich im Abschnitt 6.3 zeigt, dass 7. die Kohérenzzeit ist.
2Zitiert aus dem Springer-Lehrbuch Gerthsen Physik, Helmut Vogel, 20. Auflage, Springer-Verlag, Berlin,
Heidelberg, 1999, Abschnitt 12.2.2 Linienverbreiterung, Seite 606.
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Einsetzen von (32) fiir ¢(t) liefert

1 . .
F(w) = /Ae_chte’“’ote_‘“t - dt
0

:A/Aefaﬂdt mit a:LJri(wofw),
27
0
oo
F(w):—Ale_at :Al.
a 0 a

,» Entsprechend der statistischen Interpretation von (t) ist F'(w) die Wahrscheinlichkeitsamplitude fiir die
Emission der Frequenz w, F*(w) - F(w) ist die Wahrscheinlichkeitsdichte, mit der die Frequenz w emittiert
wird.

Wir benutzen jetzt einen hier nicht hergeleiteten Sachverhalt: Die Wahrscheinlichkeit fiir die Absorption
eines Photons hw ist gleich der Wahrscheinlichkeit fiir die Emission eines Photons hw derselben Frequenz.
Damit wird die Absorptionsintensitét fiir die Anregung des atomaren Niveaus der mittleren Energie Ey = fuwg
gegeben durch:

I(w) x F*(w)F(w)
Und dies muss dann auch gleichzeitig die Streuintensitét sein! 3
Die Intensitédt der emittierten Strahlung ist folglich

I(w) = b-F*(w) F(w) = blAai*'Aé _ ;fi
= C _ o
[% —i(wo — w)] [F + i(wo — w)] [21% +i(w— wo)] [T —i(w— WO)] )
o
I(w) = oot -

2
47

Fiir w = wo erhalten wir daraus die Gleichung, in der I(w) maximal ist und aus der wir die Konstante C
bestimmen kénnen:

C
I(wo) = & C = I(wy) —= .
(0) ﬁ (0) 472

c

Damit haben wir schliefflich die Anregungsfunktion bzw.

1
. 472
Resonanzfunktion [(w) = I(wo) T (34)
((IJ - UJO)2 + P

gefunden. Den halben Wert gegeniiber ihrem Maximum I (wp) besitzt die Resonanzfunktion an den beiden
Stellen

w1 = wo pr und w2 = wgy + pP
1 1 1
= = = 1
I(w) = I(wo) 5 = I(wo) 5 = I(wo) — :I(wo)‘i.
[(wo = &) —wo| + 5 [(wo + &) —wo| + 5

Demzufolge ist die Halbwertsbreite der Resonanzkurve

1 1 1
Aw = wo—w1 = (wo+=—) —(wo— = —.
27 27 T

Die Halbwertsbreite Aw der Resonanzkurve ist die (spektrale) Linienbreite. Somit lautet die Beziehung
zwischen der Linienbreite und der mittleren Lebensdauer eines angeregten Zustands bzw. der mittleren
Lebensdauer eines elementaren Wellenzuges

Aw-7e = 2nAv-7» = 1. 0O

3Zitiert aus: Gunnar Lindstrém, Rudolph Langkau, Wolfgang Scobel, Springer-Lehrbuch Physik kompakt 3 —
Quantenphysik und Statistische Physik, 2. Auflage, Springer-Verlag, Berlin, Heidelberg, New York, 2002, Seite
72 und Seite 73. Dabei haben wir F'(w) fir f(w) geschrieben.
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Wir kénnen aber die Resonanzfunktion auch als Funktion der Photonenenergie £ = hw bzw. Ey = hwo
betrachten, wenn wir in (34) den Bruchterm mit 7* erweitern und % = (Aw)? sowie h- Aw = I setzen. In

Analogie zur Halbwertsbreite Aw ist dann I" die Energieniveaubreite:

4;2 -h? B 1 (Aw)?R?
1(B) = 1(Fo) P ) G T (g
1) = I(Fy)—1L . (35)

(BB + 317
(35) entspricht dem Lorentz-Profil bzw. einer Breit-Wigner-Kurve.

Zwei weitere Herleitungen der Beziehung (31) finden sich im Vorlesungsskript von Professor Dieter
Freude, Universitat Leipzig 2006 unter https://home.uni-leipzig.de/energy/pdf/freusd2.pdf Abschnitt
2.6 Lebensdauer und natirliche Linienbreite, Seite 14.

Die elementaren Wellenziige sind definiert durch den elektrischen Feldanteil bzw. die elek-
trische Feldstéarke En, den magnetischen Feldanteil bzw. die magnetische Flussdichte En,
die Vakuumlichtgeschwindigkeit ¢y = |€ |, den Wellenvektor oder Propagationsvektor En in
Ausbreitungsrichtung und die Wellenzahl k,, = |I§n | = /2\—: gemaf

Die Feldvektoren eines elementaren Wellenzuges bilden im Vakuum mit dem zugehorigen
Wellenvektor ein orthogonales Rechtssystem in der Reihenfolge
E, = B, — k, — E,.

Im Folgenden unterdriicken wir vereinfachend den magnetischen Feldanteil und betrachten nur
das E-Feld, auch optisches Feld genannt. Auflerdem legen wir, wenn nicht anders ausgewiesen,
die Schwingungsebene des FE-Feldes in die xz,y-Ebene, sodass k die Richtung der z-Achse
besitzt.

Die elementaren Wellenziige {iberlagern sich zum optischen Strahlungs- oder Wellenfeld.
Insofern sind die elementaren Wellenziige Teilwellen des resultierenden optischen Wellenfeldes.

Nach dem Superp051t10nspr1nz1p erhdlt man die Gesamtfeldstarke E eines optischen
Wellenfeldes aus den Feldstirken E, und den Amplituden A,, der einzelnen elementaren
Wellenziige mit dem Laufindex n wie folgt:

=Y E, =Y A,(7t)-e”,  u(Ft) =kn T —wnt .
n n

Anders als in der oft verwendeten symbolhaften Darstellung sind elementare Wellenziige
selbstverstédndlich dreidimensionale physikalische Phénomene, die sich im Ortsraum ausbrei-
ten, sich gegenseitig durchdringen und dabei das Wellenfeld E(F, t) bilden.
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6.2 Koharenz

Siehe auch: Dr. Wiebke Salzmann, physik.wissenstexte.de, Wissenstexte — Kohérenz.

Kohérent bedeutet zusammenhingend und geht zuriick auf die die lateinischen Begriffe
cohaerentia — Zusammenhang bzw. cohaerere — zusammenhédngen. Wir schreiben im
Folgenden statt elementare Wellenziige kurz Wellenziige. Die Kohérenz ergibt sich aus der
Phasenkorrelation zwischen den Wellenziigen des Lichts. Die Kohdrenzbedingung ist eine
konstante Phasenbezichung bzw. eine konstante Phasendifferenz A¢ einschliefllich A¢ = 0
zwischen sich {iberlagernden Wellenziigen. Man kann jeden Wellenzug fiir sich genommen als
kohérent (interferenzfihig) betrachten, denn prinzipiell wéire mit einem einzelnen Wellenzug
beispielsweise Interferenz am Doppelspalt moglich.

Wir beginnen unsere Uberlegungen mit zwei Zitaten zur Definition der wichtigsten Begriffe:

,» Die Koharenz bestimmt die Interferenzfahigkeit der Teilwellen. Die Kohérenz wird
immer in Bezug auf eine gewisse Mess- Beobachtungsdauer Ti,cs definiert. Eine zeit-
lich stationidre Interferenzstruktur kann nur dann beobachtet werden, wenn sich die
Phasenunterschiede A¢ = ¢;(7},t) — ¢;(;.t) zwischen beliebigen Teilwellen E;(7,1)
und E}(f’}-,t) wéhrend der Beobachtungsdauer oder Messdauer Tiess um weniger als
27 andern. Wenn sich an einem festen Raumpunkt 7; = 7; die Phasenunterschie-
de A¢ innerhalb Tiess um weniger als 27 dndern, dann nennt man die Teilwellen
zeitlich kohidrent. Andererseits, wenn sich Phasenunterschiede A¢ an zwei beliebigen
Orten 7; # 7; innerhalb Tjyes um weniger als 27 &ndern, dann nennt man die Teilwellen
raumlich koharent. Zusammenfassend gilt, dass nur mit kohédrenten Teilwellen stationére
Interferenzmuster beobachtet werden kénnen.*4

,, Bine zeitlich stationére Interferenzstruktur kann nur dann beobachtet werden, wenn sich die
Phasendifferenzen Ay = ¢; — ¢, zwischen beliebigen Teilwellen Ej, Ek im Raumpunkt P(7)
wéahrend der Beobachtungsdauer At um weniger als 27 d&ndern. Man nennt die Teilwellen
dann zeitlich kohdrent. ...

Die maximale Zeitspanne At., wihrend der sich Phasendifferenzen zwischen allen im Punkt
P tiberlagerten Teilwellen um hoéchstens 27 dndern, heiit Kohdrenzzeit. . ..

Andert sich die rdumliche Differenz

Ar% = 901'(7?1) - %’(F2)

der Phase ; einer beliebigen Teilwelle E; wihrend der Beobachtungszeit At um weniger als 27,
so heifit das Wellenfeld rdumlich kohérent ... . Die Flidche senkrecht zur Ausbreitungsrichtung,
auf der A,¢; = 0 erfiillt ist, heilt Kohdrenzfliche F, .

Als Kohérenzlinge As. = ¢’ - At. wird die Strecke bezeichnet, die das Licht wihrend der
Kohérenzzeit zuriicklegt. Das Produkt aus Kohérenzfliche und Kohérenzldnge As. heifit
Koharenzvolumen AV, ... . Nur innerhalb des Kohdrenzvolumens kénnen Interferenz-
strukturen beobachtet werden.“?

Anmerkung zum Sprachgebrauch
Man spricht gelegentlich von der Kohérenz einer Lichtquelle, meint dabei aber selbstver-
stdndlich die Kohédrenz des von dieser Quelle emittierten Lichts.

4Zitiert aus: Prof. Dr. Ursula Keller, ETH Ziirich, Quantenelektronik, FS11, Kap 4 Interferenz und Kohérenz,
Abschnitt 4.1 Definition von Interferenz und Kohdrenz, Seite 1.

5Zitiert aus: Wolfgang Demtroder, Springer-Lehrbuch, Ezperimentalphysik 2 — Elektrizitit und Optik, 3.
Auflage, Springer-Verlag, Berlin, Heidelberg, New York, 2004, Seite 295 und Seite 296. Dort wird fir die
Kohéarenzzeit At. statt 7. und fiir die Kohéarenzlange As. statt [. geschrieben, was ebenfalls tiblich ist.
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Man unterscheidet also zwischen zeitlicher Kohérenz (auch longitudinale Kohirenz, raumliche
Longitudinalkohérenz, Langenkohéirenz oder englisch longitudinal spatial coherence genannt), die die Spek-
tralverteilung einer Lichtquelle beschreibt und somit ein Maf fiir die spektrale Reinheit ist,
und raumlicher Kohirenz (auch laterale Kohdrenz, rdumliche Transversalkohdrenz, Winkelkohérenz
oder englisch lateral spatial coherence genannt), die von der raumlichen Ausdehnung der Lichtquelle
abhangt.

Voraussetzungen fiir die Interferenz zweier Teilwellen sind

¢ hinsichtlich der Polarisation:

Die E-Felder der Teilwellen miissen am Ort des Interferenzmusters kollinear sein.
Zirkular polarisierte Wellen mit unterschiedlicher Helizitdt kénnen nicht interferieren.

e hinsichtlich Frequenz und Phase:

Die Teilwellen miissen die gleiche Frequenz besitzen und die Phasendifferenz zwischen
den Teilwellen muss zeitlich konstant sein, was allgemein nur erfiillt ist, wenn die
Teilwellen aus derselben Quelle stammen.

» Bis gilt ganz allgemein: Haben zwei Wellen verschiedene Frequenzen oder &ndern sich ihre
Phasenunterschiede mit der Zeit beliebig, so beobachtet man kein stationdres Interferenz-
muster, und die Wellen werden als inkohérent bezeichnet.*6

Kohirenz bedeutet Interferenzfahgigkeit, d. h.
kohdrentes Licht ist interferenzfihiges Licht.

Vollstandig koharente und vollstdndig inkohérente optische Wellenfelder sind Idealisierungen,
weil die dafiir erforderlichen Anforderungen an die Quelle physikalisch nicht realisierbar sind:

o Die vollstandige Kohédrenz erforderte eine punktférmige Quelle (ohne raumliche Aus-
dehnung), die streng monochromatisches Licht emittiert. Die Wellenziige streng mono-
chromatischen Lichts wéren unendlich lang.

e Die vollstandige Inkohérenz erforderte eine Quelle mit rdumlich unendlich ausgedehnter
Emissionsflache, von der Licht mit einem unendlich ausgedehnten Frequenzspektrum
emittiert wird. Wellenziige mit einer unendlichen Frequenzbreite wiaren unendlich kurz.

Damit wéren alle von real existierenden (natiirlichen und kiinstlichen) Lichtquellen emittierten
Wellenfelder genau genommen immer nur partiell-kohérent bzw. teilweise kohédrent oder
kurz teilkohdrent. Auch kann es kein absolut monochromatisches Licht geben, sondern nur
ndherungsweise monochromatisches bzw. quasimonochromatisches.

Wir werden uns im Folgenden mit der iiblichen gendherten Graduierung begniigen. So un-
terscheiden wir dann nicht-monochromatisches von monochromatischem Licht. Weiterhin
betrachten wir monochromatisches Licht als ein optisches Wellenfeld, das durch Super-
position von Wellenziigen der gleichen Frequenz entsteht, Laserlicht als monochromatisch
und kohérent und schliefllich natiirlich erzeugtes Licht als nicht-monochromatisch und
inkohérent. Damit sind alle iibrigen Wellenfelder mehr oder weniger stark bzw. schwach
teilkohérent. Im Fall der Teilkohdrenz sind die entsprechenden Interferenzmuster nicht so
scharf bzw. kontrastreich ausgebildet wie im Fall der Kohérenz. Wie man sieht, ist der
Ubergang von der Kohérenz zur Inkohirenz in der physikalischen Realitét flieBend.

Zur Orientierung nehmen wir eine Auflistung einiger Wellenfelder hinsichtlich ihrer Kohérenz
vorweg;:

6Zitiert aus: Prof. Dr. Ursula Keller, ETH Ziirich, Quantenelektronik, FS11, Kap 4 Interferenz und Kohérenz,
Abschnitt 4.1 Definition von Interferenz und Kohdrenz, Seite 9.
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e monochromatische ebene Welle

e nicht-monochromatische ebene Welle

e monochromatische Kugelwelle

e nicht-monochromatische Kugelwelle

e natiirlich erzeugtes Licht

kohdrent —
zeitlich vollstédndig, rdumlich vollstandig,

partiell-kohirent —
zeitlich partiell, rdumlich vollsténdig,

kohirent —
zeitlich vollstédndig, rdumlich vollstandig,

partiell-kohirent —
zeitlich partiell, rdumlich vollstindig,

inkoharent —
zeitlich partiell, raumlich partiell.

Parallele Wellenziige bilden durch Uberlagerung ein optisches Wellenfeld mit ebenen
Wellenfronten (ebene Wellen) und sind rdumlich kohérent.

Als Standardbeispiel fir koharentes (vollstandig zeitlich und vollstandig rdumlich kohéren-
tes) Licht gilt das Biindel paralleler monochromatischer Lichtstrahlen eines Lasers (siehe
Abbildung 4). Laserlicht entsteht durch induzierte Emission und ist vollstindig phasen-

korreliert.

Abb. 4 (Vollstandige) Koharenz des
von einem Laser ausgestrahlten Lichts.

Laser /\J i

In diesem Fall sind die parallel zueinander verlaufenden Wellenziige extrem lang und besitzen
nahezu die gleiche Frequenz sowie die gleiche Phase (schwingen also im Gleichtakt), sodass
die Wellenfronten Ebenen senkrecht zur Ausbreitungsrichtung bilden. Derartiges Laserlicht
kommt dem Ideal einer ebenen elektromagnetischen Welle sehr nahe.
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Natiirlich ausgestrahltes Licht (siehe Abbildung 5) entsteht durch spontane Emission
und ist inkohérent,

e weil die Zeitabstande zwischen den Emissionen der Wellenziige statistisch (zuféllig,
willktirlich) verteilt sind,

e weil die Wellenziige verschieden lang sind,

e weil die Wellenziige verschiedene Frequenzen besitzen, denn natiirlich ausgestrahltes
Licht ist nicht monochromatisch,

e weil die Wellenziige verschieden Phasen besitzen und verschieden polarisiert sind bzw.
weil Phase und Polarisation schwanken und

e weil die Wellenziige verschiedene Ausbreitungsrichtungen besitzen. Photonen werden
statistisch in alle Richtungen emittiert.

Abb. 5 Von einer Gliithfadenlampe na-
tirlich ausgestrahltes Licht. Dass Licht
allgemein inkohéarent ist, liegt an der dis-
kontinuierlichen Natur der Emissionspro-
zesse.

GIUhfaden%

Von Punktquellen emittierte Wellenziige sind Kugelwellen und ihre Wellenfronten bilden
Kugelflichen. Das von einer Punktquelle emittierte monochromatische Licht ist kohérent,
also vollstdndig zeitlich und vollstdndig rdumlich kohérent.

Abb. 6 Veranschaulichung der Koharenz am Beispiel
einer Punktquelle ), die monochromatisches Licht
emittiert.

Abbildung nach F. Pedrotti, L. Pedrotti, W. Bausch,
H. Schmidt, 2005.

Michelson-
P, Interferometer
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Erlauterung von zeitlicher und rdumlicher Kohérenz anhand der Abbildung 6:

o Die zeitliche (longitudinale) Kohérenz

resultiert aus der Phasenkorrelation zwischen den Teilwellen beziiglich unterschiedlicher
Laufzeiten entsprechend unterschiedlicher (raumlicher) Laufstrecken in Ausbreitungs-
richtung dieser Teilwellen und zeigt sich beispielsweise beim Nachweis von Interferenz
mit dem Michelson-Interferometer:

Beim Michelson-Interferometer fungiert der halbdurchléssige Spiegel als Strahlteiler (fiir
weinen Lichtstrahl® in Ausbreitungsrichtung). Die Léngenénderung eines der beiden In-
terferometerarme verdndert in diesem die Lichtlaufzeit, so dass man die Laufzeitdifferenz
zwischen den beiden erzeugten Teilwellen variieren kann. Nach der Wiedervereinigung
der beiden Teilwellen stellt man dann, analog zur Intensititsverteilung des Interfe-
renzmusters beim Doppelspalt, verschiedene Lichtintensitdten in Abhéngigkeit von der
Laufzeitdifferenz fest.

Monochromatisches Licht ist zeitlich kohirent, denn die Summe (Uberlagerung)
von jeweils zwei (harmonischen) Wellenziigen F; und Es gleicher Kreisfrequenz w ist
wieder eine harmonische Welle E mit der Kreisfrequenz w geméaf

Ei+ Ey = Aj-sin(wt+ ¢1) + Ag - sin(wt + ¢2) = A-sin(wt+¢) = E.

Und allgemein gilt: Wellenziige gleicher und im Beobachtungszeitraum konstanter
Frequenz (mit daraus resultierender zeitlich konstanter Phasendifferenz) sind zeitlich
kohéarent.

o Die rdumliche (transversale) Kohirenz

resultiert aus der Phasenkorrelation zwischen unterschiedlichen raumlichen Punk-
ten im optischen Wellenfeld und zeigt sich beispielsweise bei der Interferenz am
Doppelspalt:

Durch den Doppelspalt erzeugt man aus dem priméren Wellenfeld, hier der mono-
chromatischen Kugelwelle, zwei sekundére Teilwellen der gleichen Frequenz. Fallt
monochromatisches Licht der Frequenz v = § auf den Doppelspalt, so interferieren
die beiden von den Spalten ausgehenden Sekundérwellen miteinander und bilden in
Abhéngigkeit vom Gangunterschied As = QAP; — QBP; der Teilwellen ein fiir den
Doppelspalt charakteristisches Interferenzmuster auf dem Schirm. Der Gangunterschied
zwischen den Teilwellen entspricht der Phasendifferenz A¢, denn mit dem Spaltabstand
g und dem Richtungswinkel ¢ zwischen Doppelspalt und Schirm gilt (siehe Abschnitt
19.2 Fraunhoferbeugung im Skript Ausgewdhlte Themen und Herleitungen aus dem

Physik-Grundstudium, Seite 96)

2
AP = ;-g-singp = k-As.
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6.3 Zur zeitlichen (longitudinalen) Kohirenz — Kohirenzlinge

Die zeitliche Kohérenz ist charakterisiert durch die Korrelation zweier Wellenfelder an ein
und demselben Ort und zu unterschiedlichen Zeiten. Anders gesagt: Wellenziige sind zeitlich
kohéarent, wenn ihre Phasen bzw. Wellenfronten beziiglich eines festen Raumpunktes in
Ausbreitungsrichtung (longitudinal) korreliert sind. Zeitliche Kohérenz von Wellenziigen
oder Wellenfeldern liegt also vor, wenn die Phasendifferenz zwischen ihnen zeitlich konstant
ist.

Dass die vollstéandige zeitliche Kohdrenz genau genommen ein Idealzustand ist, liegt an
der endlichen rdumlichen Ausdehnung der Wellenziige in Ausbreitungsrichtung. Denn an
einem beziiglich der Quelle festen Raumpunkt erscheinen die vorbeilaufenden Lichtwellen
jeweils nur eine begrenzte und allgemein kurze Zeit lang sinusférmig zwischen plétzlich bzw.
zuféllig (statistisch) auftretenden Phasenédnderungen. Diese Tatsache fithrt uns direkt zum
Begriff der Kohérenzzeit:

,» Ein einzelner Wellenzug existiert durchschnittlich eine als Kohérenzzeit At. bezeichnete
Zeitspanne lang, die gleich dem Kehrwert der Frequenzbreite Av ist. ... Die Kohérenzzeit
entspricht effektiv derjenigen Zeitspanne, fir die man die Phase der Lichtquelle in einem
gegebenen Punkt des Raumes noch hinreichend genau voraussagen kann.“”

Anders gesagt: Das durchschnittliche Zeitintervall, in dem die Wellenziige einer Strahlung
bzw. eines Wellenfeldes ununterbrochen und ohne Phasensprung eine Sinuskurve beschreiben,
bezeichnen wir als

Kohirenzzeit At =1, .

Im Sinne der Konsistenz insbesondere mit dem Abschnitt 6.1 verwenden wir fiir die Kohé&-
renzzeit das Symbol 7, und nicht At, oder t..

Je langer die Kohérenzzeit ist, desto ausgeprégter ist die zeitliche Kohérenz des Wellen-
feldes. Den Grad der Korrelation der Phasen an zwei in Ausbreitungsrichtung liegen-
den Punkten bezeichnet man in der englischsprachigen Literatur auch als longitudinal
coherence.

Die Kohérenzzeit beeinflusst das Auftreten bzw. die Beobachtbarkeit von Interferenzmustern
beispielsweise bei der Interferenz am Doppelspalt wie folgt:

» Wenn es sich ...um endliche Wellenziige handelt, kénnte am Beobachtungspunkt ein
Wellenzug schon passiert sein, wihrend der zweite noch gar nicht eingetroffen ist. Das kann
sich besonders bei groflen Ablenkungswinkeln ereignen, wenn der Gangunterschied grof3
und die Lange der Wellenziige klein ist. Deshalb hat man den Begriff der Kohérenzlédnge
eingefiihrt, der der mittleren Linge der Wellenziige entspricht.“?

Mit der Lichtgeschwindigkeit c ist dann die

Kohiarenzliange I, = c- 7. .

Die Kohérenzlinge ist also die durchschnittliche (rdumliche) Lange der Wellenziige des Wel-
lenfeldes. Anders gesagt: Die Kohérenzlange ist die rdumliche Lange, tiber die die Teilwellen
eine feste Phasenbeziehung haben.

Veranschaulichung der zeitlichen Kohirenz

Ein Beobachter befindet sich an einem festen Ort im Ruhesystem der Lichtquelle, greift einen
der vorbeiziechenden Wellenziige heraus und betrachtet die {ibrigen Wellenziige des Lichts und

"Zitiert aus: Eugene Hecht, Optik, 4. Auflage, Oldenbourg Verlag, Wien, Miinchen, 2005, Seite 901 und Seite
902.

8Zitiert aus: Wiirzburger Quantenphysik-Konzept. G56 Kohérenzlinge,
https://www.forphys.de/Website/qm/gloss/kohlaenge.html
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zwar senkrecht zur Ausbreitungsrichtung des herausgegriffenen Wellenzuges. Findet er dabei
feste Phasenbeziehungen (Phasendifferenzen) zwischen dem herausgegriffenen Wellenzug und
anderen Wellenziigen, so sind der herausgegriffene und diese anderen Wellenziige zeitlich
kohérent (siche Abbildung 7).

Abb. 7 Zeitliche Kohéarenz.

Der Beobachter B ruht beziiglich der Licht-
quelle und ,;sieht” die Wellenziige gleicher
Frequenz jeweils mit einer bestimmten zeit-
lich konstanten Phasendifferenz A¢ an sich
vorbeiziehen.

3

Lichtquelle

Zusammenfassend und um den Unterschied zur rdumlichen Kohédrenz zu verdeutlichen, stellen
wir fest:

Besteht in einem beziiglich der Quelle festen Raumpunkt tiber ein beobachtbares Zeitintervall
Thess zwischen Wellenziigen eine zeitlich konstante Phasendifferenz, so sind diese Wellenziige
zeitlich kohéarent:

Te > Thmess =  zeitliche Kohérenz, Interferenzmuster beobachtbar ,

Te < Thmess = zeitliche Inkohérenz, Interferenzmuster nicht beobachtbar .

Wenn die Wellenziige zu kurz sind, ,iiberlappen” sie sich ggf. nicht mehr und es kommt
nicht zur Interferenz. Der Idealfall vollstdndiger zeitlicher Kohdrenz wiirde unendlich lange
Wellenziige gleicher Frequenz voraussetzen.

Im Wellenfrontenkonzept bedeutet zeitliche Kohédrenz den konstanten rdumlichen Abstand
zwischen den Wellenfronten in Ausbreitungsrichtung (longitudinal) beim Vorbeilaufen der
Wellenziige an einem festen Raumpunkt. Alle Wellenziige mit gleicher Frequenz wie beispiels-
weise bei monochromatischem Licht sind (zumindest partiell) zeitlich kohérent, aber nicht
unbedingt auch rdumlich kohérent.

Kurz gesagt:
Wenn Wellenziige bzw. Teilwellen die gleiche Frequenz und iiber einen , beobachtbaren*
Zeitraum eine feste Phasenbeziehung (Phasendifferenz) haben, sind sie zeitlich kohérent.
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Fiir das Intensititsspektrum I(w) bzw. die Intensitit der harmonischen Anteile eines Wellen-
zugs der Kreisfrequenz wq gilt :

2
. W —wo
S1n <2 . TC>
W) = T | —g—a . (36)

2

Te

Iy ist hierbei die Intensitdt an der Stelle des zentralen Maximums, d.h. an der Stelle der
Spektrallinie mit der Kreisfrequenz wqg. Schreiben wir jetzt

(W—WO)'TC = W Te—Wo Te = ¢_¢07

. <¢—¢0) ?
sin 5
I(w) = I() ST EE— .

¢ — do
2

resultiert aus (36)

Die Gleichung (36) stimmt formal mit der Intensitatsformel

. (T . 2
S. — - as
m()\ alngp)

T asin
) P
fiir die Interferenz am Einzelspalt tiberein (siche Gleichung (81) im Abschnitt 11.2 Fraunhoferbeugung). Hier
liegt das zentrale Maximum bzw. das Hauptmaximum bei ¢ =0 = sin¢p = 0 und das 1. Minimum zu beiden
Seiten des zentralen Maximums liegt bei sin ¢ = 2, sodass (37) an den Stellen der 1. Minima die Form

I, = I (37)

(T AN 17
s X.a.g sinm |’
Z.a 2
A a
annimmt. Es gilt also fiir den Einzelspalt:
Ap ==+7 Phasendifferenz zwischen 1. Minimum und zentralem Maximum ,
2

Ap =21 = il asin @ Phasendifferenz zwischen den beiden 1. Minima .

A
In der Herleitung der Interferenz am Strichgitter bzw. am Einzelspalt im Abschnitt 11.2 a hatten wir fir die
Phasendifferenz ¢ beziiglich des zentralen Maximums bei ¢ = 0 mit (73) folgendes gefunden:
9 _As_gsing
2r A A

522%~gsingp.

Setzen wir diese Phasendifferenz § in (74) ein, erhalten wir fiir die vorldufige Amplitudenformel (74) fiir die
Interferenz am Strichgitter

. ™ .
sm(N~f~gs1ngp) sin(N~§)
A, = A A — a2
sin (f - gsin go) S 5
A
sodass aus (77) schliefflich
sin ; - asin Ap) sin g
Ap = Ag—5"——> = Ao 5
3 asing 2
resultiert. Schreiben wir jetzt ¢o fiir die Phase ¢ an der Stelle des zentralen Maximums, so gilt
6 = ¢—do
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und (77) wird zu
2

o @— 90 i @—%0
Sin 2 O|:Sln B)

Fiir die 1. Minima im Verlauf von I(w) (sieche Abbildung 18) muss gelten

w1 — wp) - T, 2
2 Te

— . 2
wo—wo)te 0 o P
2 Te

Als Breite Aw des (zentralen) Hauptmaximums bzw. der Spektrallinie wird tiblicherweise
der halbe Abstand zwischen den beiden 1. Minima angenommen, d. h.

1 1 4 2
7|w2—w1|:71:£:Aw
2 2 T Te

Mit w = 27v erhalten wir daraus die spektrale Frequenzbreite Av gemafl

Av = — & Av-17. =1
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6.4 Zur rdumlichen (lateralen) Koh&drenz — rdumliche Kohirenzlinge

Die rdumliche Kohérenz ist charakterisiert durch die Korrelation zweier Wellenfelder an
verschiedenen Orten innerhalb einer zur Ausbreitungsrichtung senkrechten Ebene und zu
einer festen Zeit.

Leicht veranschaulichen ldsst sich die raumliche Kohéarenz beispielsweise mit der Interferenz
am Doppelspalt (siehe dazu Abbildung 8):

Doppelspalt
Abb. 8 Abbildung zur rdumlichen | —
Kohérenz aus: —
Wirzburger Quantenphysik-Konzept.
G56 Kohérenzlange. sentrales 7
ausgedehnte Maximum
Lichtquelle des Kohi- Schirm
renzspalts

, Bei einer ausgedehnten Lichtquelle, wie etwa der Sonne, strahlen weit entfernte Atome
vollkommen unabhéngig voneinander ihr Licht ab. Die Wahrscheinlichkeit, dass sich die
ausgesandten Wellenpakete nach dem Doppelspalt auf dem Schirm tatséchlich iiberlappen, ist
also sehr gering. Verkleinert man jedoch die Lichtquelle kiinstlich durch einen Kohérenzspalt,
dann entsteht Beugung am Einfachspalt mit einem zentralen Maximum. Wo auch immer die
beitragenden Lichtstrahlen herkamen, sie miissen gleichphasig sein, sonst wiirden sie nicht
zum zentralen Maximum beitragen. Sorgt man jetzt dafiir, dass das zentrale Maximum vom
Kohérenzspalt die beiden Spalte eines Doppelspalts gemeinsam ausleuchtet, so ist Doppelspalt-
Interferenz moglich, weil das Licht durch den Kohérenzspalt rdumlich kohidrent gemacht
wurde (“Sichtbarkeitsbedingung*).«?

» Die rdumliche Kohdrenz oder rdumliche Transversalkohdrenz (engl. lateral spatial cohe-
rence) ist moglicherweise leichter zu verstehen, weil sie eng mit dem Konzept der Wellenfront
zusammenhéngt: Befinden sich zu einem bestimmten Zeitpunkt zwei Punkte nebeneinander
auf derselben Wellenfront, so bezeichnet man die Felder in diesen Punkten als raumlich
kohérent. 10

Die rdumliche Kohérenz hingt von der rdumlichen Ausdehnung der Lichtquelle ab. Im Ver-
gleich zur Wellenldnge A sehr ausgedehnte Lichtquellen sind in der Regel raumlich inkohérent,
weil in diesem Fall zwischen zwei transversal zur Ausbreitungsrichtung benachbarten Punkten
im weit von der Quelle entfernten Wellenfeld keine Phasenkorrelation besteht. Im Idealfall
vollstéandige raumliche Kohérenz wiirde eine (unendlich kleine) Punktquelle voraussetzen.

Wir zeigen diesen Sachverhalt anhand der Interferenz am Doppelspalt in der in Ab-
bildung 9 dargestellten Versuchsanordnung und leiten dabei den Begriff der raumlichen
Kohéarenzldnge I, her: Eine monochromatische Lichtquelle bestehe aus vielen voneinander
unabhéngigen Quellenelementen @), sodass die Phasen ¢,, der von den einzelnen Quellen-
elementen emittierten Teilwellen statistisch verteilt sind. Die Quelle habe die Querdimen-
sion b mit den Randquellen bzw. Randpunkten R; und Ry. Das vom Punkt O emittierte
Licht besitzt in den Spalten S; und Sy wegen 0S; = 0S, synchrone Phasenschwankun-
gen und erzeugt deshalb auf dem Beobachtungsschirm ein zeitlich konstantes Interferenz-
muster. Wegen der Laufstreckendifferenz bzw. des Gangunterschieds wie beispielsweise

9Zitiert aus: Wiirzburger Quantenphysik-Konzept. G56 Kohéarenzlange,
https://www.forphys.de/Website/qm/gloss/kohlaenge.html
0Zitiert aus: Eugene Hecht, Optik, 4. Auflage, Oldenbourg Verlag, Wien, Miinchen, 2005, Seite 905.
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Doppelspalt Beobachtungs-
| schirm

Si

S

Abb. 9 Beim Young'schen Doppelspaltexperiment zur Herleitung der rdumlichen Koharenzlange I, zeigt
sich der Einfluss der QuellengréBe auf die Kohdrenz des Wellenfeldes am Ort der Spalte S7 und Ss. Die
Versuchsanordnung ist (nahezu) symmetrisch und die Ebenen von Quelle, Doppelspalt und Schirm sind
komplanar und erstrecken sich senkrecht zur Mittellinie durch 0, was die Herleitung deutlich vereinfacht.
Die Mittellinie kann man hier auch als optische Achse ansehen.

Abbildung und Legende nach Wolfgang Demtroder, 2004.

As = (QS1 — Q55 ist das fiir alle anderen Quellenpunkte (), nicht der Fall, insbesondere auch
nicht fiir die Randpunkte R; und Ry mit dem grofiten Gangunterschied

ASmaX = R152 7R181 = RQSl leSl mit R181 = RQSQ

fir D>g.

) ‘w\tm

~ b-sinp = b-

Einem Gangunterschied As zwischen den Teilwellen entspricht die Phasendifferenz

Ap = k-As = QI'AS.
A

Wegen der statistischen Emission der Wellenziige, ausgehend von den verschiedenen Quellen-
punkten @, folgt daraus:

Wenn der Gangunterschied Aspax groBer als A/2 wird, kann die Phasendifferenz
A¢p = ¢(S1) — ¢(S2) um mehr als 7 schwanken, sodass sich dann das Interferenzmus-
ter in der Beobachtungsebene zeitlich wegmittelt. Damit haben wir die Bedingung fiir die
rdumlich kohérente Beleuchtung der beiden Spalte fiir eine Quelle mit der Querdimension
bzw. Breite b gefunden:

b-g A b-g
Asmax ~ ﬁ < 5 <~ ? < A = (39)
raumliche Kohirenzliange [, = g < 3-)\ . (40)

Die Kohérenz und damit der Kontrast des Interferenzmusters werden starker bei Verkleinerung
der Quellengrofle bzw. Quellenbreite b oder bei Verkleinerung des Spaltabstands g. Wird der
Spaltabstand g grofler als die rdumliche Kohérenzlange [, verschwindet das Interferenzmuster.
Allgemein gilt:
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Das monochromatische Licht einer rdumlich ausgedehnten Quelle ist zwar zeitlich vollstdndig
kohérent, aber rdumlich nur partiell-kohérent, sodass der Kontrast des Interferenzmusters im
Vergleich zu einer Punktquelle gleichmdjf$ig gedampft ist.

Wir betrachten jetzt das optische Wellenfeld in extrem grofler Entfernung von einer rdumlich
ausgedehnten Quelle, die kein monochromatisches Licht emittiert. Ein Beispiel dafir ist
das auf der Erde ankommende Licht der Fixsterne. Die Wellenziige verschiedener Frequenz
verlaufen dann nahezu parallel und besitzen ndherungsweise die Eigenschaften ebener Wellen
(siehe Abbildung 10). Man spricht deshalb bei Fixsternen in diesem Zusammenhang auch
von Multifrequenzlasern. Das ankommende Wellenfeld ist vollsténdig raumlich und partiell
zeitlich kohéarent, also teilkohdrent. Wenn wir den Sterndurchmesser bzw. die Quellenbreite b
nicht kennen, kénnen wir die rdumliche Kohérenzldnge nicht mit (40) bestimmen. Allerdings
lasst sich die Winkelausdehnung « der Quelle von der Doppelspaltebene aus leicht messen
(siehe Abbildung 9). Ist die Quelle extrem weit entfernt bzw. fiir D > b wird « sehr klein
und wir erhalten in guter Naherung

b
&S ax —.

=
D

~
~

@‘w\c—

«a
2

@‘w\w

tan &
an — ~
2

Dies setzen wir in (39) ein und erhalten so die rdumliche Kohédrenzbedingung beziiglich der
Winkelausdehnung der Quelle:

b <A &
i.%a.
Dg g

Q| >

Veranschaulichung der rdumlichen Kohirenz fiir den Fall paralleler Wellenziige

— "\ A TN

Abb. 10 Raumliche Koharenz.
Der Beobachter B bewegt sich mit einem der : :
Wellenziige. Selbstverstandlich handelt es sich Lichtquelle | :\/
hierbei um ein Gedankenexperiment, weil sich : f A¢/\E\
Korper mit einer Ruhemasse nicht mit Lichtge- : |
schwindigkeit bewegen kénnen. N\~

NS

(

%

Ein Beobachter greift einen der parallelen Wellenziige des Wellenfeldes heraus, bewegt sich
dann mit ihm und beobachtet dabei die {ibrigen Wellenziige des Wellenfeldes und zwar
komplanar zur Ebene der Wellenfront, d. h. in diesem Fall senkrecht zur Ausbreitungsrichtung
des herausgegriffenen Wellenzuges. Findet er dabei feste Phasenbeziehungen (Phasendiffe-
renzen) zwischen dem herausgegriffenen Wellenzug und anderen Wellenziigen, so sind der
herausgegriffene und diese anderen Wellenziige rdumlich kohédrent. Wie man an der Abbildung
10 erkennt, besteht beziiglich der Wellenfronten der verschiedenen Wellenziige eine konstante
Phasendifferenz. Das Licht ist in diesem Fall vollstdndig rdumlich kohérent.
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Parallele Wellenziige mit gleicher Ausbreitungsrichtung bzw. Wellenfelder mit ebenen Wel-
lenfronten sind rdumlich kohérent, aber nicht unbedingt auch zeitlich kohédrent. Unabhéingig
von der Frequenz besitzen sie im Vergleich zur Phase des Wellenzuges des ,,mitbewegten*
Beobachters in jedem Raumpunkt senkrecht zur Ausbreitungsrichtung immer die gleiche
Phasendifferenz. Verglichen wird also im Fall der rdumlichen Kohérenz paralleler Wellen-
ziige die Phasendifferenz zwischen den Wellenziigen zu Beginn und am Ende von Ti,ess an
verschiedenen Orten senkrecht zur Ausbreitungsrichtung.

6.5 Zur Kohirenz bei Punktquellen

Von Punktquellen emittierte Wellenziige sind Kugelwellen und ihre Wellenfronten bilden
Kugelflachen.

Abb. 11 Vollstandige raumliche und vollstandige zeitliche
Kohéarenz des Wellenfeldes einer Punktquelle, die monochro-
matisches Licht emittiert.

Abbildung nach E. Hecht, 2005.

Betrachten wir zunéchst das Wellenfeld einer Punktquelle, die monochromatisches Licht
emittiert (siche Abbildung 11). Ein beziiglich der Quelle ortsfester Beobachter B findet
im gesamten Bereich des Wellenfeldes eine konstante Phasendifferenz zu den sich radial
ausbreitenden Wellenziigen und es besteht eine starke Phasenkorrelation mit den Punkten
Ly bis L3 bzw. im gesamten Wellenfeld langs der Ausbreitungsrichtung. Weiterhin stellen
wir fest, dass nicht nur die Phasendifferenz in den Punkten 77 und 75 auf der Wellenfront
von B sondern auch die Phasendifferenzen ldngs aller Wellenfronten im gesamten Wellenfeld
zeitlich konstant gleich Null sind.

Das von einer Punktquelle emittierte monochromatische optische Wellenfeld ist also vollstéan-
dig zeitlich und vollstédndig rdumlich kohérent.

Abb. 12 Vollstandige raumliche und evl. teilweise zeitliche
Koharenz des Wellenfeldes einer Punktquelle, die Wellenziige
verschiedener Frequenz emittiert.
Abbildung nach E. Hecht, 2005.

Betrachten wir jetzt das optische Wellenfeld einer Punktquelle, die kein monochromatisches
Licht emittiert (siche Abbildung 12). Wie man sieht, sind auch in diesem Fall die Phasen-
differenzen ldngs aller Wellenfronten der Wellenziige verschiedener Frequenz im gesamten
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Wellenfeld zeitlich konstant gleich Null, sodass das Wellenfeld vollstdandig rdaumlich kohdrent
ist.

Ein beziiglich der Quelle ortsfester Beobachter B findet keine im gesamten Bereich des
Wellenfeldes konstante Phasendifferenzen zwischen den sich radial ausbreitenden Wellenziigen,
sodass keine oder nur eine schwache Phasenkorrelation zwischen den Punkten L bis L3 bzw.
im gesamten Wellenfeld lings der Ausbreitungsrichtung besteht. Deshalb ist das Wellenfeld
in der Abbildung 12 wenn iiberhaupt nur teilweise zeitlich kohdrent. Treffen ndmlich die
Wellenfronten von Abbildung 12 beispielsweise auf einen Doppelspalt, so kommt es danach in
Abhéngigkeit von der Lénge der nacheinander folgenden Wellenziige und abhéngig von ihrer
Frequenz zu mehr oder weniger kurzzeitigen, verschiedenen Interferenzmustern. Wenn bei
nicht-monochromatischem Licht iiberhaupt ein stationdres Interferenzbild entsteht, ist dieses
keinesfalls so scharf, wie es bei monochromatischem Licht der Fall wéire. Allgemein gilt:
Von einer Punktquelle emittiertes Licht mit einem ausgedehnten Frequenzspektrum ist zwar
rdumlich vollstédndig kohérent, aber zeitlich nur partiell-kohérent, sodass der Kontrast das
Interferenzmuster mit zunehmendem Abstand von der optischen Achse zunehmend geddmpft
wird.
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7 Die Polarisation des Lichts

Wir beginnen dieses Kapitel mit einem Zitat — in Anfithrungszeichen gesetzt — aus Eugene
Hecht, Optik, 4. Auflage, Oldenbourg Verlag Miinchen Wien, 2005, Seite 533 und Seite 534:

,, Natiirliches Licht

Eine gewohnliche Lichtquelle besteht aus einer sehr grofien Zahl zuféllig ausge-
richteter atomarer Strahler. Jedes angeregte Atom sendet etwa 10~8s lang einen
polarisierten Wellenzug aus. Alle diese Wellen gleicher Frequenz {iberlagern sich
zu einer einzigen polarisierten Welle, die maximal 10~% s lang stabil bleibt. Stéindig
werden neue Wellenziige emittiert, und die Gesamtpolarisation éndert sich in einer
vollkommen unvorhersehbaren Art und Weise. Finden diese Verdnderungen mit so
grofler Geschwindigkeit statt, dass man die einzelnen resultierenden Polarisations-
zustinde nicht mehr erkennen kann, so spricht man von natiirlichem Licht oder
unpolarisiertem Licht, wobei letztere Bezeichnung etwas irrefithrend ist, da sich
das Licht in Wirklichkeit aus einer schnell verdnderlichen Abfolge verschiedener
Polarisationszustinde zusammensetzt. Zufdllig polarisiertes Licht ist wahrschein-
lich eine treffendere Bezeichnung.

Wir konnen natiirliches Licht mathematisch anhand zweier beliebiger,
inkohdrenter, orthogonaler, linear polarisierter Wellen gleicher Amplitude auf-
schreiben, also Wellen, deren relativer Phasenunterschied sich schnell und
willkiirlich verdndert.

Dabei wollen wir nicht vergessen, dass eine idealisierte monochromatische Welle
als unendlicher Wellenzug dargestellt werden muss. Wird diese Welle in zwei
orthogonale Komponenten senkrecht zur Fortpflanzungsrichtung zerlegt, so miissen
die Komponenten ihrerseits dieselbe Frequenz besitzen, unendlich ausgedehnt
und deshalb wechselseitig kohirent sein (¢ = konstant).! Mit anderen Worten:
Eine ideal monochromatische ebene Welle ist immer polarisiert. . ..

Im Allgemeinen ist Licht, ob ,natiirlichen* oder ,kiinstlichen* Ursprungs, weder
vollkommen polarisiert noch unpolarisiert — beides sind Grenzfille. Der elektrische
Feldvektor verdndert sich meistens weder vollig unregelméflig noch vollig regelmé-
Big, weshalb man solches Licht auch teilweise polarisiert nennt. Am einfachsten
beschreibt man dieses Verhalten mit einer Uberlagerung von natiirlichem und
polarisiertem Licht.*

Wir werden uns in diesem und in den folgenden Kapiteln mit polarisiertem, insbesondere mit
linear polarisiertem und zirkular polarisiertem Licht (in Form ebener Wellen) beschéftigen.
Dabei ist es uns erlaubt, vereinfachend nur den elektrischen bzw. optischen Anteil E(F, t) der
elektromagnetischen Wellen zu verwenden, denn die Polarisation einer elektromagnetischen
Welle ist durch die Richtung des elektrischen Feldvektors E definiert.

Polarisation des Lichts im Wellenbild

Polarisationszustande

P -Zustand: lineare Polarisation,
L-Zustand : linkszirkulare Polarisation,
R -Zustand: rechtszirkulare Polarisation,

€ -Zustand : elliptische Polarisation (allgemeiner Fall).

Die lineare und die zirkulare Polarisation kann man als Spezialfélle der elliptischen Polarisa-
tion ansehen.

'Wir werden den relativen Phasenunterschied ¢ mit A¢ bezeichnen.
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Wir gehen aus vom elektrischen bzw. optischen Anteil

E, (’F, t) Eoy - ei(E-F—wt +dox) Foo - el%oz)
E(Ft) = | EyFt) | = | By, - e®mwt+on) | = | By, -eldow) | ikt
Ez('F, t) EOZ . ei(E-F—wt +¢02) EOZ . eid)(]z)

einer ebenen elektromagnetischen Welle in der Darstellung als komplexwertige Wel-
lenfunktion mit konstanter Amplitude EO = (EOx, Ey,, EOz) , mit dem variablen Pha-
senanteil (E T — wt) und mit den Phasenkonstanten ¢oz, ¢oy, ¢0. . Die Phasenkonstanten
kénnen positive und negative Werte annehmen. Das Vorzeichen im variablen Phasenanteil
(E - — wt) bestimmt die Ausbreitungsrichtung der Wellen :

elbz=wt)  —  Ausbreitung in (+z)-Richtung ,

elb=+et)  —  Ausbreitung in (—z)-Richtung .
Wie allgemein iiblich werden auch wir im Folgenden nur Wellen mit der Ausbreitung in die
positive Richtung der z-Achse betrachten.

Ohne Beschrinkung der Allgemeinheit legt man gern die Ebene der Wellenfront in die
(z,y)-Ebene, sodass sich die Welle geméif3 |E| = k, = k langs der z-Achse ausbreitet. Die
komplexwertige Wellenfunktion erhélt dann die einfache Gestalt

E'x(Z’ t) Fog - el(kz—wt +¢oz) Eog - el%oz)
Bot) = [ Bty | = | By -ebztron) | = [ By, - eiton) | eitbet)
0 0 0

Weil man den Phasennullpunkt frei wéhlen kann, sind nicht die Phasenkonstanten selbst im
Zusammenhang mit der Polarisation relevant, sondern von Bedeutung ist nur der

Phasenunterschied A¢ = ¢o, — o,

zwischen den Komponenten F, und £, von E, welcher dann der y-Komponente zugeordnet
wird. Die komplexwertige Wellenfunktion hat damit schliefflich die Gestalt

Eog - ei(szwt) Eos
E(z,t) = | By, -elhzwt+80) | = | F . eila0 | gilkzmwt) (41)
0 0
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7.1 Linear polarisiertes Licht

Unabhéngig vom Amplitudenverhéltnis Ey,/Ejy, entsteht linear polarisiertes Licht (P) unter
den Bedingungen, dass entweder die z- und die y-Komponente von E die gleiche Phase
besitzen oder dass der Phasenunterschied A¢ zwischen den Komponenten ein positives oder
negatives ganzzahliges Vielfaches von 7 betragt:

Ap =m- -1, meZ, (Eo=Eop) N (Eow# Eoy)

Damit und ausgehend von (41) wird linear polarisiertes Licht (P) beschrieben durch die
komplexwertige Wellenfunktion

EO:J:
E(z,t) = Ey, - elA? e®kz=w)  fir Ap=m-7, meZ |. (42)
0

Fir m = 0, £2, +4, ... schwingen die z- und die y-Komponente von E gleichsinnig beide
gleichzeitig in die positive oder negative Richtung. Das bedeutet, dass die Schwingungsebene
fiir gerade m und m = 0 graphisch gesehen durch den 1. und 3. Quadranten der (z,y)-Ebene
geht.

Fir m = 41, £3, £5, ... schwingt die y-Komponente entgegengesetzt zur z-Komponente
von E. Das bedeutet, dass die Schwingungsebene fiir ungerade m graphisch gesehen durch
den 2. und 4. Quadranten der (z,y)-Ebene geht.

Das Verhéltnis Eo,/Eo, legt die (konstante) Polarisationsrichtung fest geméfl

Eoyy
EOJC ’

tana =

wobei « der Neigungswinkel ist, der zwischen der positiven xz-Achse und dem
E-Vektor und demzufolge im 1. oder 4. Quadranten der (z,y)-Ebene liegt, sodass —90° <
a < 490° gilt.

Mit einem Polarisationsfilter kann man die Komponente Epol von E herausfiltern. Epol ist
dabei die Projektion von E auf die Polarisationsrichtung des Filters und besitzt demzufolge
die Polarisationsrichtung des Filters nach unseren Voraussetzungen in der (z,y)-Ebene. Ist 9
der Winkel zwischen dem E-Vektor und der Polarisationrichtung, erhalten wir

‘Epol‘ = cost - ‘E‘ .

Bei dieser ,Filterung” bzw. Polarisation wird die Phase nicht verdndert, sodass Epol die
gleiche Phase besitzt wie E.
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7.2 Zirkular polarisiertes Licht

Im speziellen Fall mit

A¢:¢Oy—¢ox::|:g+m-27r,m6Z und EOiC:EOy:EO

resultiert die zirkulare Polarisation, beschrieben durch die komplexwertige Wellenfunktion

Ew(z7t) EO
E(zt)= | By(z,t) | = | By -el2¢ | =90 fir Ap = ig tm-2r, mez |. (43)
0 0

Wir unterscheiden rechtszirkular und linkszirkular polarisiertes Licht.

Rechtszirkular polarisiert (R) bedeutet, dass der E-Feldvektor bei Blickrichtung zur
Lichtquelle mit konstanter Amplitude Fy und mit der gleichen Frequenz, mit der er oszilliert,
im Uhrzeigersinn um die Ausbreitungsachse rotiert. Analog dazu rotiert der E-Feldvektor
bei linkszirkularer Polarisation (£) entgegengesetzt zum Uhrzeigersinn um die Ausbrei-
tungsachse.?

Eine andere Moglichkeit, die zirkulare Polarisation zu klassifizieren, bietet die Helizitét.
Die positive Helizitit o" entspricht einer rechtshiindigen Schraubenlinie und die negative
Helizitat o~ einer linkshéndigen Schraubenlinie, wobei der entsprechende Daumen in die
Richtung der Vorwértsbewegung der Schraube zeigt.

Wir fiihren jetzt einige Beziehungen an, die wir im Folgenden benétigen werden:
. cos(%ia)zisina = cos(a:tg):$sina,
sin (g:l:a): cosa = sin (a:l:g)::tcosa.
oAcb:—g—i—m-Zﬂ,mEZ =
cos (kz — wt — §) =sin(kz — wt) eilt cos(kz — wt) voraus .

2

. A¢=+E+m-27r, merl =

2
cos (kz —wt + 5) = —sin(kz — wt) lduft cos(kz — wt) nach .
o A¢= —g entspricht dem Faktor —i = e'(=2) (44)
cilbz—wt=3) — (i(=2) . pilkz—wt) — ;. [cos(kz—wt) +isin(kz—wt)] ,

k2wt =3) — gin(kz—wt) — icos(kz—wt) .

Wl

T .
L] = — i 1 = 1(+ ) M
Ap =+ 5 entspricht dem Faktor +i = e : (45)

llbzmwt+3) — (i(+3)  pllbemwt) — 4. [cos(kz—wt) — isin(kz—wt)] ,

ei(kZ—Wt"‘%) = sin(k‘z—wt) + icos(k:z—wt).

2Diese Konvention hinsichtlich rechts- und linkszirkularer Polarisation ist in der Optik iiblich. In Anlehnung
an die Helizitdt der Photonen gilt in der Quantenphysik die umgekehrte Konvention.
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Physikalisch relevant ist letztlich nur der Realteil der komplexwertigen Wellenfunktion (41),

namlich
Ey, - cos (k:z —wt + ¢0x)

Re{E’(z, t)} = | Eoy - cos (kz — wt + ¢oy)
0

Im speziellen Fall des zirkular polarisierten Lichts ist das in unserer Notation

coS (kz—wt)
Re{ﬁ(z,t)} = Fo | cos(kz —wt+ Ag) | fir Ag = j:g +m-2n, meZ.
0

WEeil in der Literatur der Phasenunterschied A¢ manchmal auch der z-Komponente von E
zugeordnet wird, zeigen wir der Vollstdndigkeit halber tabellarisch die Phasen der - und
y-Komponente von E(z,t) fur die sich dann ergebenden vier moglichen Falle

T T
¢0y:A¢::I:§:><Z>0x:0 und ¢0m:A¢::|:§:>¢0y:01

Tabelle: Zirkulare Polarisation

rechtszirkulare Polarisation (R) linkszirkulare Polarisation (£)
= 0~ negative Helizitdt = o1 positive Helizitét
Ey eilt E; um 3 voraus. E, lauft E; um 7 hinterher.
el(kz—wt) el(kz—wt)
E(zt) = By | dtbewt—5) | &) E(zt) = By | dtbewtts) | &
0 0
cos (kz — wt) cos (kz — wt) cos (kz — wt) cos (k:z — wt)
cos (kz — wt — g) = | sin (kz — wt) cos (kz —wt+ %) = |—sin (kz — wt)
0 0 0 0
oder oder
olkz—wt+7) ei(kz—wt=7)
E(Z, t) = Fy ei(szwt) (ii) E'(27 t) = F, ei(szwt) (i@
0 0
coS (kz —wt+ g) —sin (kz — wt) oS (kz —wt — g) sin (k:z - wt)
CoS (k:z — wt) = cos (k‘z — wt) cos (k:z — wt) = | cos (k‘z — wt)
0 0 0 0
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Achtung!

Wihrend der variable Phasenanteil
kz — wt bzw. wt —kz = —(kz — wt)

aquivalent verwendet werden kann, beide Varianten beschreiben die Ausbreitung derselben
Welle in die positive z-Richtung, ist dies fiir die Phasen kz — wt + ¢ und wt — kz + ¢g mit
dem konstanten Phasenanteil ¢y # 0 nicht der Fall. Wenn wir namlich statt kz — wt als
variablen Anteil wt — kz benutzten, wiirden wegen

kz — wt +¢g und wt —kz+ ¢g = —(kz—wt —qSo)

die z- und die y-Komponente in den Vektoren der Tabelle ,,Zirkulare Polarisation* vertauschen
und damit auch die Formeln fiir rechts- und linkszirkulare Polarisation.

7.3 Elliptisch polarisiertes Licht

Die elliptische Polarisation (£) ist im Grunde genommen der allgemeine Fall der Pola-
risation. Man kann nédmlich die lineare und die zirkulare Polarisation als Spezialfille der
elliptischen Polarisation auffassen, denn mit m € Z gilt fiir die

e lineare Polarisation:
Ap =m-m im Fall (Eo, = Eoy) und (Eo, # Eoy) ,

e zirkulare Polarisation:

A(b:m-ﬂ:tg im Fall  Eg, = Eo, ,

e elliptische Polarisation, Ellipsen-Hauptachse entlang der x- oder y-Achse orientiert:

Ap = m~7r:|:g im Fall  Eg, # Eoy , (46)
e clliptische Polarisation, Ellipsen-Hauptachse um den Winkel a gegen die positive
x-Achse geneigt: Ad £ m-m
und - im Fall (Eo, # Eoy) und (Eo, = Eoy) -
Ap # m-m+ 5

(47)

(46) und (47) sind also die Bedingungen fiir das Auftreten der elliptischen Polarisati-
on. In einer ortsfesten (z,y)-Ebene (z = const) rotiert der E-Vektor bei elliptischer
Polarisation senkrecht zu k um die z-Achse und verdindert dabei seinen Betrag. Der Nei-
gungswinkel « von der positiven z-Achse zur Hauptachse® der Polarisationsellipse (siche
Abbildung 13) ergibt sich aus

Eo
2 Eoy Eoy - A 25
tan 2o = 0:;:2 0y (:205 ¢ _ Eoa 5 cosA¢p | (48)
EOJ: - EOy 1— %)
Ox

3Zur Erinnerung: Die Hauptachse entspricht dem gréSten Durchmesser und die Nebenachse dem kleinsten
Durchmesser einer Ellipse. Die Lénge der grof3ien Halbachse ist gleich dem gréfiten Radius und die Léange
der kleinen Halbachse ist gleich dem kleinsten Radius einer Ellipse.
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Und den Elliptizitdtswinkel ¢ der Polarisationsellipse erhédlt man aus

. Eo,
2- Eoy Egy - sin A 25"
sin2e = 0352 0y 82111 ¢ _ Eoa 5 sin Ag . (49)
e ()
Y|E,
E,,
E,
X

Abb. 13 Polarisationsellipse mit der groBen Halbachse H und der kleinen Halbachse h. Mit dieser
Notation gilt die Beziehung ~ H? 4+ h* = Ej, + Ej,. Abbildung nach Eugene Hecht, Optik, 4. Auflage,
Oldenbourg Verlag, Wien, Miinchen, 2005, Seite 531.

Ausgehend von

Ey(z,t) Ey,, - ellkz=wt) o
(41) E(z,t) = | By(z,t) | = | Eoy-elb=wt480) | = | Ep, - el40 [ ellkzet)
0 0 0

mit ¢ =0 = A¢ = oy — Por = Ppoy werden wir jetzt den Realteil

Repy FEy,; - cos (kz — wt)
Re{E(z, t)} = |®E, | = | Eoy-cos(kz —wt+ Ag)
0 0

von (41) unter der Bedingung (47) diskutieren, d. h. fiir eine Polarisationsellipse mit gegen die
z-Achse geneigter Hauptachse. Das Ziel dabei ist, eine Gleichung fiir die Kurve zu ermitteln,
welche die ,, Spitze® des E-Vektors in einer ortsfesten (z,y)-Ebene (Schwingungsebene mit
z = const) beim Durchlauf der Welle beschreibt. Die gesuchte Kurvengleichung sollte am
Ende weder von z noch von der Zeit abhdngen. Formen wir also

Rep = By, - cos (k‘z — wt) und ReEy = FEyy - cos (k‘z — wt + Agb)

u. a. mit Hilfe des Additionstheorems cos(a 4 3) = cosa - cosf Fsina - sin f um:

Re
o, cos A¢p = cos (kz — wt) -cos A¢
ReE 2
sin?(kz —wt) = 1 —cos®(kz —wt) = 1 — (E z) , (50)
Ox
ReE
Z Y = cos(kz — wt) - cos A¢p — sin(kz — wt) - sin A¢ .
0Oy

o7



Daraus folgt

Rep Rep
—4 T cosAp = —sin(kz —wt)-sinAg (5:0;
Eoy,  Eos

-sin® A¢ |

2 2
ReE ReE ReE
LA T cosAgp | = [1— ( x)
E()y EOJ: EOx

ReE 2 ReE ReE ReE 2
Y1) —2 x) ( y)cosA +< w) cos® A
< EOy ) ( Eo, EOy ¢ Loy ¢

ReE 2
= sin? Ag — (J:) sin? Ag .
Eoz

Umordnen ergibt schliellich die Ellipsengleichung

ReEx 2 ReE 2 ReE ReE
+ Y1) —2 x> < y)cosA = sin’A
( Eoy ) ( Eoy ) < Eor Eo, i ¢

fiir eine schrige Ursprungsellipse, d. h. fiir eine Ellipse, deren Mittelpunkt zwar mit dem
Koordinatenursprung zusammenfillt, deren Haupt- und Nebenachse aber nicht parallel zu
den Koordinatenachsen verlaufen. Wir sprechen in diesem Fall von einer Ellipse in nicht
achsenparalleler Ursprungslage.

Achtung!
Weiterfithrendes zu Ellipsen im Allgemeinen und eine Darstellung der Hauptachsentransfor-

mation finden sich im Anhangsabschnitt 17.1 Und die Berechnung von Ejp, und Ej, zeigen
wir im Anhangsabschnitt 17.2.

o8



7.4 Jones-Formalismus

Mit Hilfe des Jones-Formalismus?, also mit Jones-Vektoren und Jones-Matrizen lisst sich
die Gesamtwirkung von nacheinander angeordneten polarisierenden optischen Bauelementen
bequemer berechnen.

Zunachst zeigen wir, wie Jones-Vektoren konstruiert werden. Man geht vom elektrischen
(optischen) Anteil bzw. dem E-Feld einer ebenen elektromagnetischen Welle in der komplexen
Darstellung aus und legt den E-Vektor in die z,y-Ebene, sodass der Wellenvektor k und
damit die Ausbreitung der Welle in die positive Richtung der z-Achse zeigt:

Ey(z,1) Eo, - ei(kz=wt+doz) Eo - ¢1%02)
E(z,t) = | Eyz,t) | = Eoy.ei(kz—wt+¢oy) = Eoy.ei¢0y) eilkz—wt)
0 0 0
E,
- |, oilke—wt)
0

Unterdriickt man jetzt die z-Komponente und den variablen Phasenanteil, so erhélt man einen
zweidimensionalen Vektor FE, der nur noch die Information iiber die Amplituden FEy, = const
und FEop, = const sowie {iber die Phasenkonstanten ¢, und ¢q, enthalt:

B (7)) = (7™° ). (51)
Ey EOy : el¢0y

» Da der Phasennullpunkt beliebig gewdhlt werden kann (es kommt nur auf die Differenz
A¢p = ¢oy — dor an), kénnen wir ¢o, = 0 withlen.“5 Demzufolge erhalten wir aus (51)

oz =0 = A¢ = ¢Oy — ¢oz = QbOy =

Bo () B )
Ey Eoy'el¢

Normiert man schliefllich E auf (die Lange bzw. das Betragsquadrat) 1, resultiert der

Jones-Vektor J = £ = é on‘
}E’ ’E‘ Eoy.elA¢>

mit

’E‘ = \/on eltox . [, e~i¢0a | Eo, eldoy . Eo, e—idoy

= /o - Bog + Eoy @56 - By o186 =\ [F2 + B3, .

Die Jones-Vektoren fiir die Polarisationszustédnde £ (allgemeiner Fall), P, R und £ sind u. a.
unter Beriicksichtigung der Tabelle ,Zirkulare Polarisation* :

4Siche auch bei Wikipedia unter dem Suchbegriff Jones-Formalismus.

5Zitiert aus Wolfgang Demtréder, Springer-Lehrbuch,
Ezxperimentalphysik 2 — Elektrizitat und Optik, 3. Auflage, Springer-Verlag, Berlin, Heidelberg, New York,
2004, Abschnitt 9.6.7 Jones-Vektoren, Seite 286.
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o P-Zustand (lineare Polarisation)

Mit dem Neigungswinkel o zwischen der positiven z-Achse und der néchstgelegenen
Schwingungshalbebene gilt fiir den Amplitudenvektor

B o_ Ey, B FEycosa
0 E()y EO sin av .

‘E} = /Eg, + E§, = \/Egcosza—i—Egsin?a = FE,

Und mit A¢p =0 sowie

ist der zugehorige Jones-Vektor
R 1 [Ey-cosa cos &
Jp = — . =1 .
Ep \ Ej - sina sin «

a=+45° =  cos(+45°) = 1/V2, sin(+45°) = +£1/v2

) =)

Die zwei Sonderfalle der linearen Polarisation sind der

horizontale P-Zustand bzw. die horizontale Polarisation (in z-Richtung) mit dem Index
H und der

vertikale P-Zustand bzw. die vertikale Polarisation (in y-Richtung) mit dem Index V.
Mit Eo, = Ey N Eoy = 0 bzw. Ey = Ey A Eop, = 0 resultieren also die
Jones-Vektoren

i g5 (0)=0) A=mla) - ()

Wir kénnen {fH, fv} als Orthonormalbasis betrachten, denn

Fir

resultiert dann der Jones-Vektor

. 1 [Eo-
Jigze = —
Ey \ Ey - (:i:

S-S

ijH :jv'jv: 1 und jHjV =0.

Darauf werden wir spéter noch zuriickkommen.



o R-Zustand (rechtszirkulare Polarisation)

Fiir den Fall der rechtszirkularen Polarisation erhalten wir unter Beriicksichtigung der
Tabelle ,,Zirkulare Polarisation® und mit (44) bzw. mit A¢ = -5

E _ EO . _ EO
Ey-e 2 —iEy

|E| = \/E3+E} = V2-Eq

Jo 1 Eo\ 1 [ 1
T VRE \-iE) V2 \-i

o L-Zustand (linkszirkulare Polarisation)

und mit

den Jones-Vektor

Fiir den Fall der linkszirkularen Polarisation erhalten wir unter Beriicksichtigung der
Tabelle ,Zirkulare Polarisation* und mit (45) bzw. mit A¢ = +5

E _ EO - _ EO
Ey-etis i By

|E| = \JE2+E} = V2 E

J._ 1 Eoy 1 (1
E_\@Eo iEy) V2 \i

o &-Zustand (elliptische Polarisation, allgemeiner Fall)

und mit

den Jones-Vektor

Fiir den Fall der elliptischen Polarisation erhalten wir unter Beriicksichtigung von

b0z =0 = Ad = poy — oz = b0y, A¢pF#m-m, mecl

zunachst den Jones-Vektor in der Form

. 1 -~ 1 [E 1 2
e et (5) - (5
|E| E\E, JE3, + B3, \Eoy ¢
Fiir die komplexe Zahl E’y = Foy - e 2? gilt geméB der Euler’schen Formel :

Ey, - 8 = Eoy - (cos A¢ +isin A¢) = Epycos Ap +i - Ep, sin Ag

-~

Re{Ey} Im{Ey}

= Re{Ey} +1- Im{Ey} = ReEy + iImE'y .
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Der Jones-Vektor fiir die elliptische Polarisation ist damit schliellich auch

EOm

1
(ReEy + iImE

\/ Eo. + Eg,

-

Je =

)

Fir Eo, = Eoy und A¢ = m - 7 £ 7 resultiert daraus ein Jones-Vektor fiir die zirkulare

Polarisation.

Fiir Fo,z # Eoy und Ag = m -7+ § resultiert daraus ein Jones-Vektor fiir die elliptische
Polarisation mit lings der x- oder lings der y-Achse orientierter Hauptachse der

Polarisationsellipse.

Bei Jones-Vektoren zur Beschreibung der zirkularen Polarisation sind die Kompo-
nenten betragsgleich und ist eine der Komponenten rein imaginér.

Bei Jones-Vektoren zur Beschreibung der elliptischen Polarisation mit ldngs der
x- oder langs der y-Achse orientierter Hauptachse sind die Komponenten nicht
betragsgleich und ist eine der Komponenten rein imaginér.

Bei Jones-Vektoren zur Beschreibung der elliptischen Polarisation mit geneigter
Hauptachse sind die Komponenten allgemein nicht betragsgleich, kénnen aber
betragsgleich sein. Immer aber ist in diesem Fall eine der Komponenten komplex
mit nicht verschwindendem Realteil und nicht verschwindendem Imaginérteil.

Die Uberlagerung von polarisiertem Licht ldsst sich durch Addition der entsprechenden

Jones-Vektoren beschreiben, wie beispielsweise :

v = () (1) = (3) = 2
ot = ()4 (9) = (1) = va s
Forde = 5 (8) 055 0) =

Wie man sieht, ist die Summe von Jones Vektoren nicht normiert.

)_\@.fH.

Dass bei der Uberlagerung

von JR und J, » der Jones-Vektor v/2 - JH (fiir die horizontale Polarisation) resultiert, liegt an
der Art und Weise, wie in (41) die Wellenfunktion E(z,t) zur Beschreibung der Polarisation
definiert ist. Dort wird ndmlich die Phasendifferenz A¢ der y-Komponente zugeordnet geméafl

!
¢Om =0.

62



Man unterscheidet im Wesentlichen drei Arten von polarisierenden optischen Bauelementen:

e Polarisationsfilter oder Linearpolarisatoren :
Selektion einer Schwingungsrichtung.

Durch die Unterdriickung aller anderen Schwingungsrichtungen ist die Intensitét des
ausfallenden Lichts gegeniiber dem einfallenden Licht reduziert. Es resultiert also linear
polarisiertes Licht, das in der Polarisationsebene bzw. in Richtung der Durchlass- oder
Transmissionsachse des Linearpolarisators schwingt. Transmissionsachse und positive
z-Achse bilden den Winkel 4.

¢ Polarisationsdreher:

Die Schwingungsrichtung bzw. Polarisationsebene linear polarisierten Lichts wird um
den Winkel 8 gedreht bei unverdnderter Lichtintensitét.

e Phasenverzogerer:

Das Licht wird in einer Schwingungsrichtung gegeniiber der dazu orthogonalen Schwin-
gungsrichtung verzogert. Die Komponente des einfallenden Lichts, die verzogert wird,
bendtigt mehr Zeit, um das optische Bauelement zu durchlaufen. Phasenverzogerer
besitzen also eine durch die Verzogerung langsame Transmissionsachse und folglich
orthogonal dazu eine schnelle Achse, wodurch im ausfallenden Licht eine Phasenver-
schiebung oder Phasendifferenz zwischen der Komponente der langsamen Achse und
der Komponente der schnellen Achse resultiert.

Polarisierende optische Bauelemente entsprechen Operatoren in Gestalt von
2 x 2-Matrizen, den Jones-Matrizen M. Einfallendes polarisiertes Licht kann durch
Jones-Vektoren dargestellt werden, auf die dann die Jones-Matrizen wirken. Jones-Matrizen
sind allgemein nicht kommutativ. Werden also mehrere optische Bauelemente nacheinander
eingesetzt, miissen die zugehorigen Jones-Matrizen in der gleichen Reihenfolge auf den
Jones-Vektor wirken wie die Bauelemente auf das einfallende Licht.

Herleitung einiger Jones-Matrizen

e Ein Linearpolarisator habe eine Transmissionsachse mit dem Winkel 9 zur positi-
ven z-Achse. Auf diesen Polarisator mit der Jones-Matrix My = (CCL g) treffe
a) linear polarisiertes Licht mit dem Neigungwinkel o = 1, das den Polarisator unge-
hindert passiert, und
b) linear polarisiertes Licht mit dem Neigungswinkel a4+ 90° = ¥ + 90°, das vollsténdig
blockiert wird.
Mit den entsprechenden Jones-Vektoren

und
J a=0 (cos(¥+90°)\ [—sind) J
(@+90°) = \sin(490°) ) ~ \ cos®)  “+
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erhalten wir zwei Matrixgleichungen, die uns dann zwei Gleichungssysteme aus jeweils
zwei Gleichungen mit zwei Unbekannten zur Bestimmung der Matrixelemente liefern:

b cos v - cos v
d) <sin79> = My J” - (sinz?) ’
b —sin > 0

d) < cosz9> = MyJy = <0> =

(I) : acos?y 4+ bsind = cos?,

Q

Mﬂfl9=<

o

S|

My 4900 = (

(9

Bestimmung von a und b :

(I) : a(—sind¥) 4+ bcos?y = 0 =

in 9 ¥
b-cosﬁza-sinﬁ@b:a&, a-cosﬁ+a8m -sind = cosv =
cos v cos v
a = cos’V,
b = cos¥ sind .

Bestimmung von ¢ und d :
(III) - ccost  + dsin? = sind,
(IV) : ¢(—sind) + dcos?y =0 =

. sin 7 sin ¢
d-cost=c-sint & d=c——, c-cosv+c
cos ¥ cos

-sind = sind =

¢ = sind cos ¥,
d = sin®4 .

Die Jones-Matrix fiir den Linearpolarisator mit einer Transmissionsachse im Winkel 9
zur positiven z-Achse ist also

( cos? cos ¥ sin 19)
My =

sin 1 cos Y sin?

Mit sin(+45°) = :t% und cos(£45°) = —i—% erhalten wir damit sofort die entsprechen-

den Jones-Matrizen fir Linearpolarisatoren mit den Transmissionsachsen im Winkel
von ¥ = +45° und ¥ = —45°:

u +3 1/ 1 +1
o\l )T 2 . 1)

Mz sei die Jones-Matrix zu einem Linearpolarisator mit horizontaler Transmissionsach-
se, der also horizontal polarisiertes Licht erzeugt. Wenn die z-Achse horizontal verlauft,
gilt ¥ = 0° bzw. ¥ = £180° und damit

10
= (g o) -

D=



My sei die Jones-Matrix zu einem Linearpolarisator mit vertikaler Transmissionsachse,
der also vertikal polarisiertes Licht erzeugt. Wenn die y-Achse vertikal verlduft, gilt
¥ = £90° bzw. ¥ = £270° und damit

00
w - (09).

Polarisationsdreher um den Winkel [ :
Die Jones-Matrix Mg soll den Jones-Vektor Jy = (gﬁfg) durch Drehung der Polarisati-

- o My -
onsebene um den Winkel 3 in den Jones-Vektor Jy, g iiberfithren gemafl Jy N Joip:
> (a b\ [cos¥)  [cos(P+pB)\ =
Mgdy = <c d) (Sirn?) N (sin(ﬂ +8)) Jors =

a cosv + b sinv = cos(¥+ ), c cost¥ + d sind = sin(d + ) ,

(Anwendung der Additionstheoreme)
cos fcost) —sin Bsiny = cos(9+ ), sinfcost+ cosBsingd = sin(d + ) .

Der Koeffizientenvergleich liefert schliellich

a =cosfB, b= —sinf, ¢ =sinf, d = cosf,
cos —sin
Mg = P b . (52)
sin 3 cos 3

Phasenverzogerer um den Phasenwinkel bzw. die Phasendifferenz A®:

Fiir das einfallende Licht schreiben wir geméaf (51)

E _ EOLE . ef(z)Oac _ %z ‘

Eoy - el%oy E,

mit den Phasenkonstanten ¢, und ¢q,. Dabei wurde der variable Phasenanteil el(kz—wt)
unterdriickt. Ein Phasenverzogerer verdndert die Phasen des einfallenden Lichts wie

folgt:
E, Eqy - ¢l(90at 2) E, - ¢i®s
~ — . = ~ . .
E, Eq, - el(®oyt®y) E, - ey

Es resultiert dabei zwischen den Komponenten E, und Ey die ggf. zusédtzliche
Phasendifferenz A = &, -9, ,

d. h. eine der beiden Komponenten ist nach der Passage des Phasenverzogerers gegentiber
der anderen Komponente verzogert. Die Matrixgleichung dafiir lautet

~ el 0 Ex E’x . 1%z
Mpg - E = sl =1~
0 %) \E, E, - e
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mit der allgemeinen Jones-Matrix fiir Phasenvergogerer

) ei¢z 0
A S (53)

Der phasenverzogerten Komponente entspricht die langsame Achse des Phasenverzoge-
rers. Orthogonal dazu besitzt der Phasenverzdgerer demzufolge seine schnelle Achse.
Die schnelle Achse der Phasenverzogerer wird in den zugehorigen Jones-Matrizen als
hochgestellter Index angegeben. Ausgehend von der Tabelle ,,Zirkulare Polarisation*
im Abschnitt 7 gilt folglich

Sy -, =AP>0 = &,>P, = MA(';) , x-Achse ist schnelle Achse ,
Sy -9, = AP0 = &,<P, = MA(Z;) , y-Achse ist schnelle Achse ,

wobei die z-Achse horizontal und die y-Achse vertikal verlaufen soll.

Wichtige Phasenverzogerer sind die Viertelwellenverzogerungsplatte, kurz
%-Platte, entsprechend AP = +7,

die Halbwellenverzogerungsplatte, kurz
%-Platte, entsprechend AP = =+,
und evl. auch die Achtelwellenverzogerungsplatte, kurz
%-Platte, entsprechend A® = +7.
Ausgehend von (53) kénnen wir die zugehorigen Jones-Matrizen beispielsweise wie folgt
bestimmen:

A/4-Platte:

Fir ¢, =1, 0, =0 = Ap=71>0 gilt

(" 0\ (10
M o e2) T \0 i)

Fiir ¢,=0,®, =1 = Ap=—1 <0 gilt

ol

M(y)

(2 0\ (i 0
AMET L0 ) \0 1)

Fiir ¢, =0, &, = -2 = Ap=1>0 gilt
Fiir &,= -1, 80, =0 = Ap=-1<0 gilt

Fiir ¢, =7, &, = -1 = Ap=1>0 gilt



N

w _ (% 0 _ gz (1 0 _ 1 /f1+i 0
MA/4_<0 e—i’4’>_e (0 -i) 2\ 0 1-i)°

Dabei haben wir die folgende Beziehung verwendet:

T ]. ]. 1
+iT [e] L o . .
e 4 = cos(+45") +isin(+45 = —d+i— = — (1+£1i).

A/2-Platte:
Fir ¢, =7, ®, =0 = Ap=m>0 gilt

0
@ _ (¢ 0\ (1 0
= (o) = 6 )

Fir ¢, =0, ¢, =7 = Ap=—-7<0 gilt

) em 0 _ (-1 0\ _ @
Myj = <0 e0> - < 0 1) = M
Fir ¢, =5, ¢, =5 = Ap=7>0 gilt

(e 0\ (/-1 0
Az 0 ¢z) 0 i/’

W _ (€2 0\ _ (i 0\ _
= (7 0) - (09 -

Die Voreilung Ay = +m und die Nacheilung Ay = —7 sind physikalisch dquivalent.

A/8-Platte:
Fir ¢, =%, &, =0 = Ap=7>0 gilt

4
0
(=) _ (e 0 (1 0
A/8 <0 eiz> o <O eld )

Fiir ¢, =0, &, =% = Ap=—7 <0 gilt

M(y)

_ei%O_ei%O
Mg \0 ) o 1)

Anwendungsbeispiele

e Das einfallende Licht sei linear polarisiert mit o = +45° geméfl dem Jones-Vektor
J450 und laufe durch einen Linearpolarisator mit horizontaler Transmissionsachse
entsprechend der Jones-Matrix My :

i~ () 50 - 50 -

Das austretende Licht ist die horizontale Komponente des einfallenden Lichts und
demzufolge horizontal polarisiert.
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e Das einfallende Licht sei horizontal polarisiert geméfl dem Jones-Vektor Jy und laufe

durch eine %—Platte mit schneller y-Achse entsprechend der Jones-Matrix M ,5721 :

()—’ . i 0 1 o i iz 1 N
= (o 1) (6) = () =<5 (o) =<5

Der Vergleich von einfallendem und austretendem Licht zeigt:

E ellkz—wt) E, ei(kx—wt-&-g)
Jy = E = 0 —s ¢3Jy 2 E= 0
0 0

Das austretende Licht ist also ebenfalls horizontal polarisiert und besitzt die gleiche
Amplitude wie das einfallende Licht. Allerdings lduft die Phase des austretenden Lichts
der Phase des einfallenden Lichts infolge der Verzégerung der z-Komponente durch die
2-Platte um Z hinterher (siche Tabelle ,Zirkulare Polarisation“).

Das einfallende Licht sei rechtszirkular polarisiert geméfi dem Jones-Vektor fR und
laufe durch einen Linearpolarisator mit vertikaler Transmissionsachse entsprechend der
Jones-Matrix My :

(9 5B -~

Das austretende Licht ist die vertikale Komponente des einfallenden Lichts und demzu-
folge vertikal polarisiert. In Ubereinstimmung mit der Tabelle ,,Zirkulare Polarisation“
zeigt der Faktor —i = e_ig, dass die herausgefilterte vertikale Komponente der unter-
driickten horizontalen Komponente um § vorauseilt.

Das einfallende Licht sei linear polarisiert mit dem Neigungswinkel oo = 45° und laufe
durch eine %—Platte mit schneller z-Achse:

(I)—»_loil_il_—»

Das austretende Licht ist linkszirkular polarisiert.

Wollen wir zirkular polarisiertes Licht erzeugen, brauchen wir also nur mit einem
entsprechenden Polarisationsfilter linear polarisiertes Licht mit einem Neigungswinkel
von +45° bzw. betragsgleichen Komponenten zu erzeugen und dieses anschlieffend

durch eine %—Platte laufen zu lassen.

Das einfallende Licht sei linkszirkular polarisiert und laufe durch eine %—Platte mit
schneller xz-Achse:

@ ¢ _ (1L 0y 1 /1y 1 /1) =
e = (5 9) 75 (0) = 7 (5) = T
Das austretende Licht ist linear polarisiert mit dem Neigungswinkel o = —45°

Das einfallende Licht sei linear polarisiert mit dem Neigungswinkel o = 45° und laufe
A

durch eine g—Platte mit schneller z-Achse:

@y _ (1 0y 1 /1y 1 /1 _p
it = o d) () = 7 lo) = %



Wegen Ag = 7 # mm + § ist das austretende Licht nicht mit lings der x- oder lings
der y-Achse ausgerichteter Hauptachse der Polarisationsellipse elliptisch polarisiert,
nicht zirkular polarisiert und selbstverstdndlich nicht linear polarisiert. Und auch wenn
die Komponenten von fg hier geméf

el | = Vel . 717 =Vel =1

betragsgleich sind, so ist das austretende Licht in diesem Fall dennoch elliptisch polari-
siert — jedoch mit dem Neigungswinkel v von der positiven z-Achse zur Hauptachse
der Polarisationsellipse. Bestimmen wir also « unter Berticksichtigung von

1

NG ~ E
- NG) 0z EOy
‘ < L ¢l > <E0y . e14> e How = Sy Fou

mit (48):

lim (tan2«a) = 400 = 2 =90°, a=45°.

E0$~>E0y

Das austretende Licht ist also elliptisch polarisiert mit einem Neigungswinkel der
Polarisationsellipse von a = 45°.

Es bestétigt sich in diesem Fall, dass bei elliptischer Polarisation mit geneigter Haupt-
achse der Polarisationsellipse eine der Komponenten von Jg komplex ist mit nicht
verschwindendem Realteil und nicht verschwindendem Imaginérteil, denn

- 1 1
et = cos45® +isindh® = —+1—.
2 V2
A

Das einfallende Licht sei linkszirkular polarisiert und laufe durch eine g-Platte mit
schneller x-Achse:

@ 7 _ (1 0 L 1 _i 1 2

Im austretenden Licht ist also A¢p = ?jf =135° = cosA¢p = —% und die Komponen-

ten des zugehorigen Jones-Vektors sind betragsgleich. Fiir den Neigungswinkel o der
Polarisationsellipse erhalten wir damit:

Eo, Boy (L
_2pcoste 2 (35)
tan2a = 57— = 3
B ()
Fox Eog
lim (tan2a) = —oo = 20 =—-90°, a=—45°.

FEox —>E0y

Das austretende Licht ist elliptisch polarisiert mit einem Neigungswinkel der Polarisa-
tionsellipse von o = —45°.
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e Mit einem Polarisationsfilter erzeugen wir vertikal polarisiertes Licht mit dem Jones-

Vektor Jy und lassen dieses der Reihe nach zuerst geméif (52) durch einen Polarisati-
onsdreher mit einem Drehwinkel von 8 = 45°, dann durch eine %—Platte mit schneller
y-Achse und schliefflich durch einen Linearpolarisator mit vertikaler Transmissionsachse

RV ON o (0 0\ (i 0y I /1 -1\ (0
My - Myjy - Mg=aze) - v = (0 1) (0 1) NCAVEERYARN!

laufen :

1 /0y 1 2

T2 (1) RVC AR
Das austretenden Licht ist vertikal polarisiert, besitzt also nur die y-Komponente des
E-Feldes. Allerdings ist diese Komponente durch die Polarisationsdrehung mittels
M(g—450) um den Faktor % kleiner als im einfallenden Licht. Die vom Polarisati-
onsdreher gebildete z-Komponente wird durch das Polarisationsfilter mit vertikaler
Transmissionsachse am Ende unterdriickt, sodass die Intensitét des austretenden Lichts

gegeniiber dem einfallenden Licht um den Faktor (%)2 = 1 kleiner ist.



7.5 Intensitat des polarisierten Lichts im Vakuum
Siehe auch Kapitel 2.

Der Poynting-Vektor
S =ExH = cc}ExB

fiir das Vakuum beschreibt die (momentane) Energiestromdichte eines elektromagnetischen
Feldes bzw. des Lichts. Die sich daraus ergebende

Intensitat I = <|§‘> = socg<‘177><§‘> = Eocg <E$E> = E()C()<E2>

ist dann das zeitliche Mittel des Betrags des Poynting-Vektors.

Die Intensitédt einer linear polarisierten ebenen elektromagnetischen Welle

-  [cos(kz — wt + ¢o) Eo, - cos(kz — wt + ¢y)
E(r,t) = Eg | cos(kz —wt+ o) | = | Eoy-cos(kz —wt+¢o) | ,
0 0

die sich im Vakuum in positiver z-Richtung ausbreitet, ist mit dem Mittelwert

(cos? a) = 5 und mit

E%(t) = Ej,cos®(kz — wt + ¢g) + Eoy cos®(kz — wt + ¢o) = Ej cos?(kz — wt + ¢p) :

€
lineare Polarisation : [ = gy¢g <E2> = OTCOES

Die Intensitat der zirkular polarisierten ebenen elektromagnetischen Welle

Ey - cos(kz — wt)
E(r,t) = | Ep-sin(kz —wt) | ,
0

die sich im Vakuum in positiver z-Richtung ausbreitet, ist mit sin? o + cos? @ = 1 und mit

F%(t) = E? cos®(kz — wt) 4+ E2 sin?(kz — wt) = E? = E? = const :

zirkulare Polarisation : I = gg¢y <E2> = o0 Eg = €00 E?
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8 Polarisation des Lichts in Bra-Ket-Notation

Die Bra-Ket-Notation geht auf Paul Dirac zuriick und wird deshalb auch Dirac-Notation
genannt. Sie dient insbesondere der bequemeren mathematischen Behandlung der Quanten-
physik.

8.1 Der Umgang mit komplexen Vektoren und Matrizen in

Bra-Ket-Notation

Als Einstieg in dieses Kapitel bzw. zur Erinnerung geben wir kurzgefasst die wichtigsten
Regeln zum Umgang mit komplexen Vektoren und Matrizen in der Bra-Ket-Notation an
und verweisen auf das diesbeziiglich etwas ausfiihrlichere

Kapitel 12 Rechnen mit komplexen Vektoren und Matrizen im Skript Mathematik — Finige
ausgewdhlte Themen fir das Physikstudium.
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e Zustandsvektoren :

U1
U2
Ket-Vektor (Spaltenvektor) vy == | : |,
(%
Bra-Vektor (Zeilenvektor) (v| = (UT vy o v} ) .

+ Adjungiert (hochgestellter Index T)

heifit komplex konjugiert (hochgestellter Index *) und zusétzlich transponiert (hochge-
stellter Index ), also sinngeméif

t=0)T=(T)=*
Beispiele:
Adjungieren der Matrix A S L (A*)T = (AT)* ,
Adjungieren des Spaltenvektors @ := (91) : @1 = (ﬁ*)T = (vf, v3),
Adjungieren des Zustands-Ket-Vektors [v) : [v)T = (]v)*)T = (v| .

Komplexes Standardskalarprodukt (kurz Skalarprodukt) (cw|fv) mit «,5 € C
ist hermitesch, im ersten Argument antilinear (konjugiert linear) und im zweiten
Argument linear :

(aulBo) = o™ (ulBv) = a" B {ulv)

Ausgeschrieben in Zeilen- und Spaltenvektor erhélt dieses Skalarprodukt dann die
Gestalt
Bui

(Oé*’([{ a*u ) Bug :OZ*B(UTU1+U§U2+"')-



» Vollstindige Orthonormalbasis (kurz VON-Basis) oder vollstdndiges Orthonormal-
system (kurz VONS) wie beispielsweise {|a;)} :

Die Basis-Bra-Vektoren (a;| :== (0 -+ 0 a} 0 --- 0) und die

Basis-Ket-Vektoren |a;) = | a;

liefern als Skalarprodukt
(ailaj) = ((aila))” = 65 = (ailai) =1, (ailaj) =0
und als dyadisches Produkt
D laial = Y P =1

mit den Projektionsoperatoren P; = |a;)(a;| und der Einheitsmatrix bzw. dem
Identitatsoperator 1 .

Beispiel :
2 a\ . 0 . arat 0 0 0
et (5) 0+ (2)-09 - (5 )+ L)
Py Py
mit a;a; = a; a; (aila;) 1 =

 Das Skalarprodukt ¢; aus dem Zustandsvektor |v) und dem Basis-Bra-Vektor |a;) , also
¢i = (ailv),

ist die Projektion von |v) auf |a;), gesprochen: ,Skalarprodukt v in a;“ ¢; ist somit die
komplexe skalare Vektorkomponente von |v) ,in Richtung® des Basisvektors |a;) .

o Entwicklungssatz — Darstellung (Entwicklung) eines (Zustands)vektors |v) in der
VON-Basis {[a;)} im C":

vy (a1v)
V9 {as|v)
lv) = Zwmi) :zvi|ai> =1 |= < : | , (54)

= Z\aﬁ(az‘fw = Zpﬂv) = 1fv) = |v) . (55)

——
=1
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Die Projektionen von |v) auf die Basisvektoren |a;) bzw. die Skalarprodukte |v)
in |a;) sind die Entwicklungskoeffizienten v; € C. In (54) steht ganz be-
wusst nicht das Gleichheitszeichen, sondern das :=-Zeichen (,,definiert durch*). Die
skalaren Vektorkomponenten v; = (a;|v) sind ndmlich nicht gleich den zugehorigen
(vektoriellen) Vektorkomponenten va;) = (a;|v)|a;) = |a;)(a;|v) = P;|v), wie man
bei einem Vergleich von (54) und (55) feststellt und wodurch noch einmal die Bedeutung
des Indentitatsoperators 1 und der Projektionsoperatoren P, deutlich wird.

Fiir Operatoren in der basisfreien bzw. abstrakten Form schreiben wir beispielsweise

A.

Im konkreten Fall bezieht man sich jedoch auf eine geschickt gewédhlte VON-Basis.
Die dann in dieser Basis dargestellten Operatoren nehmen die Gestalt von Matrizen
(Aij) mit den Matrixelementen A;; an. Es gilt deshalb A := (Aij).

Zur Erliuterung zeigen wir den Ubergang von der basisfreien Darstellung zur Darstel-
lung in einer Basis mit einer Analogie am Beispiel des Zusammenhangs zwischen der
elektrischen Feldstirke E und der elektrischen Flussdichte D in anisotropen Materiali-
en, vermittelt durch die Permittivitat € = ¢g g,. Dabei ist die Permittivitat ein Tensor
2. Stufe bzw. im konkreten Fall eine (3 x 3)-Matrix mit den Matrixelementen &;; :

—

Abstrakte, basisfreie Darstellung: D = cE .

Darstellung in der Standardbasis {é’x, €y, é’z} = {é’l, €3, é'g} :

B 3 3 3
D = ZDléZ == ZZgijEjéj’
i—1 i—1 j=1
. D, €11 €12 €13 Eq
D := |Dy| = |21 €22 €23 Es
Ds €31 €32 €33 Ej

Hermitesche Operatoren:
Observablen werden reprasentiert durch Operatoren und realisieren sich in Gestalt von
Messwerten. Messwerte aber konnen nur reelle Zahlen sein. Deshalb sind alle zu den
tblichen Observablen in der Quantenmechanik gehorigen Operatoren hermitesch, d. h.
selbstadjungiert wie beispielsweise die Matrix

3 2+1i i

A=]2-i 2 1-2]| = A",

—i 142 5
Hermitesche Operatoren bzw. die zugehérigen hermiteschen Matrizen besitzen ndmlich
folgende Eigenschaften:

— Thre Hauptdiagonalelemente sind reell.

— Thre Eigenwerte sind reell und reprasentieren mogliche Messwerte wie z. B. in den
Eigenwertgleichungen AlY) = aly) bzw.  Al,) = an|thy) .

— Thre Eigenfunktionen sind orthogonal und bilden ein VONS.



« Matrixdarstellung von Operatoren in der VON-Basis {|a;)},
Matrixelement :

Die basisfreie Operatorgleichung
[v) = Afu) (56)
erhélt in der VON-Basis {|a;)} die Gestalt
v) = > (ajlv)]a;) = Alu) = A ag|u |a;)

iy J

> wilay) = Zuj Alaj) . (57)

J

uj

Durch Multiplikation von (57) mit dem Basis-Bra-Vektor (a;| von links erhalten wir

> lailvjlas) = ng az\aj = D ujlaildla;) =
J

J

v; = Z <CLZ'|A’CLJ‘> ‘Uj s (58)
J Aij

vi = > Ay,
J

also die skalare Vektorkomponente v; des Vektors |v) und die
Matrixelemente <ai|fl|aj> = Ajj

in der VON-Basis {|a;)}. Aus den Matrixelementen A;; ergibt sich die
Matrixdarstellung (Aij) des Operators A. Mit ihr erhalten wir

vl u1 (@|Alar) (ar|Alag) - (ar]Aay) - u1
2 Uz (az|Alar) (az|Alaz) - (a2|Ala;) - U2
3 VTS N I o .
v; uj (ai|Alar) (ai|Alag) -+ (ai|Alaj) --- uj

Die Matrixdarstellung eines Operators A ist also

= ZAij!ai><aj| = (4y)

In der beispielsweise 2-dimensionalen VON-Basis {al, ag} ist dies

Anrlar)(ar] + Aizlar)(az| + Agi|az)(a1] + Aszlaz)(az|
= Ay <(1))(1 0) + Az <(1)>(0 1) + Ag <(1))(1 0) + Az <(1)>(0 1)

(A 0 0 Ap 0 0 0 0 (A Ap
_<0 0>+<0 0)+<A21 0)+(0 A22> = <A21 A22>'D
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Doch wie erhalten wir durch Anwendung des Operators A auf den Vektor |u) die
Darstellung des Vektors |v) in der Form

0) = vilar) +valaz) + -+ +wilai) + - = Y vilai) ?

i

Wir multiplizieren (58) mit dem Basis-Ket-Vektor |a;) und summieren iiber i:

\U>:Zw|az‘> = > D (ailAlag) - uj | fas)

i\ J
= Zi:ic%@la» = %:<ai|Aaj>.<ai|.u> las)
= lai){ailv) = Y las)(ailAlaj){a;| u) ,
i T
! i
v) = Alu).

Wie man sieht, gilt fiir die Matrixdarstellung (A,-j) eines Operators A in der VON-Basis
{la;)} auch

A = 141 =) " aiail Alag)(as] = > Aijlai)(as] = (Ay)

ij ij
e Synopse: Adjungierte [ (AB)T = BTAT = (AB)! = Bt At ]
* Bra-Vektor (u| : (u|t = |u) .
* Ket-Vektor (v] : )t = (.

* Skalarprodukt (u|v):

()" = o)l = (ol = 3 ofws = (Gulo))”
* dyadisches Produkt |u)(v]|: l

(la) (@) = (ol fu)! = fo)ul
* Matrix-Vektor-Produkt A|u) = |v):

()" = [)f = (o] = [)iAT = (ulal,

wobei AT rechts von (u| stehen muss, u.a. weil (u| ein Zeilenvektor ist.
* Matrix-Matrix-Vektor-Produkt A(B|u)) = |v):
[A (B|u>)r = o) = (| = ((uB!) AT

Hierbei ist die Reihenfolge von Matrizen und Vektor zu beachten.



8.2 Lineare Polarisation

8.2.1 VON-Basis, Bra- und Ket-Vektoren

Als VON-Basis wihlen wir die Jones-Vektoren Jy fiir horizontal bzw. léngs der z-Achse
polarisiertes und Jv fiir vertikal bzw. lings der y-Achse polarisiertes Licht. In der Bra-Ket-
Notation schreiben wir fiir die Basisvektoren

Ju — |H) und fl_]; — (H],
Jv — V) und jVT —

Damit erhalt die VON-Basis die Gestalt
{la)} = {la1), laz)}

— = {|H), |V} = {@ ! <(1)>} ’

sodass beispielsweise

und

zijlai><ai| — ZPi _q
e - (o o (e

(D=6

gilt. Wir werden jetzt linear polarisiertes Licht bzw. das linear polarisierte optische Feld

~  (Eo\ cosa) -
E = <E0y> = FEjy (sina> = FEy-Jp =
E = Eo.€; + Epy€,y = Eycosa-€, + Eysina-€, = Z (é’i-E') €, 1€{x,y},

i

—

mit dem Neigungswinkel « zur positiven x-Achse in der Bra-Ket-Notation und in der oben
gewdhlten VON-Basis darstellen. Damit gilt fiir den Jones-Vektor Jp :

Jp — cosalH) +sinalV) und J_g — cosa(H|+sina(V].

Analog zur Darstellung eines Bra-Vektors

u) = Z@@!aﬁ = > lai)(ai |u)

% %

=u;

7



in der VON-Basis {|al>} wird demzufolge das linear polarisierte optische Feld E dargestellt
durch den Bra-Vektor |e) gemé&s

Ey-Jp — |e) = Eycosa |H)+ Egsina |V),
N—— N——
(Hle) = Eoq (Vle) = Eoy

E — o) = (Hle)|H) +{V]e)[V) = Eoz|H) + Eoy|V) |- (59)

8.2.2 Polarisationsfilter mit horizontaler Transmissionsache

Analog zur Wirkung des Operators A auf den Bra-Vektor |u) gemaf
basisfrei : vy = Alu), (60)

Basis {|a;) } o) = ) failAlay) - (ajlu)las) , (61)

ij

vio= Y lailAlag) - (ajlu) = Y Aijruy =
i A T j
uy
U2

|v) == (Az'j)

Uj

lassen wir jetzt die Jones-Matrix My fiir das Polarisationsfilter, das die horizontal polari-
sierte Komponente des einfallenden Lichts herausfiltert, auf linear polarisiertes Licht (59)
entsprechend dem Jones-Vektor fp mit dem Neigungswinkel a wirken. Das einfallende Licht
indizieren wir mit ,,in“ und das austretende mit ,,out“:

Eoi = My-Ey = My-EgJp = Ey- My Jp (62)
——r

Ein
~ 10 CoSs (v 1 0 Ey - cosa Eycosa FEos
E, = Ey- . = . = = . (63)
0 0 sin « 0 0 Ey - sin o 0 0

Wie erwartet wird die horizontale x-Komponente von Ein, also die Projektion von E’in auf
den Basisvektor fH, herausgefiltert.

Weil wir die Jones-Matrizen im Abschnitt 7.4 beziiglich der VON-Basis {fH, fv} berechnet
hatten,! sind die Elemente der Jones-Matrizen gleich den Matrixelementen des Operators A
bzw. der Matrix (Aij). Das bedeutet, dass der Operator A die Funktion des polarisierenden
optischen Elements bzw. hier des Polarisationsfilters reprasentiert. Kurz gesagt:

Ma = (g o) = I

ist der Projektionsoperator fiir die horizontale Projektion und reprasentiert damit das ent-
sprechende Polarisationsfilter.

!Eine VON-Basis legt man fest. Die Matrixdarstellung eines Operators jedoch muss man ,,finden®.

78



Den Ubergang von der Gleichung (62) im Jones-Formalismus zur Gleichung
|eout> = MH|€in>

in Bra-Ket-Notation erlautern wir, indem wir, angepasst an unseren Fall, zunéchst die
allgemeine basisfreie Gleichung (60) mittels (61) in der speziellen

VON-Basis {|al>} = {|a1>, |a2)}

darstellen. Dabei verwenden wir fiir den Operator A, ebenfalls angepasst an unseren Fall,
die Matrix |a1){a1| geméaB

A 1 10
A= ol = (5) 00 = (g ) = M = et
v) = Alu
2 2 2
= ZZ al|A’a’J (aj|u)|ai) ZZ aslax)(aila;) - (aj|u)|a:)
=1 j=1 =1 j=1
A1 =1 A12=0

e N e N
= (ailay) (a1]ar) - {a1]u) |a1) + {a1]a1) (a1az) - (az|u) [a1) +
——— N — ——— N —

1 1 u1l 1 0 u2

0 1 0 0
—N—— NN ——— N
(az]ar) (a1lar) - (a1|u) laz) + (azlar) (a1laz) - {azlu) la2) = (a1lu)fa1r)  (64)
S——— ul ——— ug SN——

As1 =0 Ao =0 U1

= (Anw + Apw)|ar) + (Azwr + Ao ug)|ag) = Ajuilar) = wilar),

|U> L U1 o All A12 ) Uy . Allul B Uy (65)
o V2 N A21 AQQ u9 N 0 N 0 )

Ausgehend von (64) und (65) konnen wir jetzt unter Beriicksichtigung von

.
lar) = |H), a2) = |V),
) fl| > |lu) = len) :Eg(cosa\H>—|—sina]V>) :EOI|H)+EOy\V>:Ein,
v) = Alu) =
up = FEycosa = Ey,, us = Epsina = Ey,y,
|U> = |60ut> :Eout

die Wirkung des Polarisationsfilters mit der

A

Jones-Matrix My = (Aij) = A
auf linear polarisiertes Licht mit dem Jones-Vektor fp in Bra-Ket-Notation zeigen:
l€out) = [H)(H|ein)
= (Hlem)|H) = (H|Ey (cosa|H) +sina|V)) |H)

= Egcosa(H|H)|H) + Egsina (H|V) |H) ,
E 1 E
Oz Oy

’eout> = EO:L‘|H>a

EOx
leout) := ( 0 ) )

Dieses Ergebnis stimmt mit (63) tiberein.
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8.2.3 Polarisationsfilter mit Transmissionsachse im Winkel

Die Wirkung des Polarisationsfilters mit einer Transmissionsachse im Winkel ¢ zur positiven
x-Achse auf linear polarisiertes Licht entsprechend dem Jones-Vektor Jp wird mit Hilfe des
Jones-Formalismus beschrieben durch

Eoi = My-Ey = My-EyJp = Ey- My Jp, (67)
——

Ein
B cos? ¥ cos 1 sin ¥ P CoS (v cos? ¥ cos ¥ sin Eo,
out sin ¥ cos ¥ sin? ¥ 0 sina/  \sindcosd sin? ¥ Eoy
<cos2 ¥ cos a + cos ¥ sin ¥ sin a)
Ey - .

sin ¥ cos ¥ cos o + sin? ¥ sin «

Bei der Darstellung von (67) in der Bra-Ket-Notation unter Beriicksichtigung von (66) und
mit der

A

Jones-Matrix My = (Aij) = A

zeigt sich, wie im Abschnitt 8.2.2 erldutert, dass die Elemente der Jones-Matrix My gleich
den Matrixelementen des entsprechenden Operators A sind. Wir wollen dies deshalb lediglich
mit der Berechnung eines Matrixelements analog zu (64) demonstrieren:

cos?9¥  cos¥sind 1
An = (a2 Mylar) = (0 1) sincos?  sin? 0

29
— (0 1) o3 = sindcosty = Ay . O
sin ¥ cos Y

Damit erhalten wir schliefllich
An u1 Aqa u2
#2\ —~ = ——
leout) = cos®V (H|u)|H) + cosIsind (V]u) |H) +
sin cos® (Hu) |V) + sin® 0 (V]u) |V)
S—— —— M~ ——

Aoy ul Ago u
Eog E()y
2 e N . e N
= cos“ V- Eycosa|H) + cos¥sindd - Egsina |H) +

sin cos ¥ - Egcosa |[V) + sin?4 - Eysina [V)
——— ———

Eoz EOy

cos? ¥ cos ¥ sin v Ey,
\eout> = . . 9 . O
sin 9 cos ¥ sin® 9 Ey,
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8.3 Zirkulare Polarisation

In Analogie zum Jones-Formalismus (siehe Tabelle 2) schreiben wir unter Verwendung
der VON-Basis {|H) = (}) ., [V) := (9)} fir linkszirkular(£)-polarisiertes und
rechtszirkular(R)-polarisiertes Licht in Bra-Ket-Notation?

C: J}:\% <}> — |R) = |ot) = 12(|H>+1|V>) = \2 G) )

Re = (L) = = le = Soam-avy) = (1)

Dabei sind die Faktoren +i = e™2 Phasenfaktoren und stehen fiir die Unterschiede A¢ = +3
der Phase von £, gegeniiber E.

Um Verwechselungen zwischen den Bezeichnungen £, R und |R), |L) zu vermeiden, schreiben
wir in der Bra-Ket-Notation fiir linkszirkulare Polarisationszustéinde |c™) und fiir rechtszir-
kulare Polarisationszusténde |07 ).

8.4 Photonenspin

Der Begriff Photonenspin wurde im Kapitel 1 eingefiihrt. Den Spin s, eines sich in z-Richtung
fortbewegenden Photons erhalten wir durch die Anwendung des

Photonen-Spinoperators 3§, := h(? _(1)>

auf die Zustandsvektoren |ocT) oder |o~) dieses Photons:

silot) = h<? 01) \2 (}) _ n.12 (}) ~ hlot) (68)

0
= s,=h bzw. §=1(0] ,
h

slo) = h<? ?) \}5 <_11> _ h.12 <_11> — hle) (69)

0
= Ss,=—h bzw. §=1[ 0
—h

Die Matrix (? _(i)) ist wie die Pauli-Matrizen hermitesch, unitdr (mit Determinante —1)
und spurlos. Deshalb sind ihre Eigenwerte reell mit Betrag 1 und in der Summe gleich Null.
Folglich sind ihre Eigenwerte +1 und —1. Und die normierten Eigenvektoren® sind

1 /1 1 1
o) = —= (. ] zum Eigenwert +1 und |0 )= ——= . | zum Eigenwert —1 .
V2 \i V2 \ i

2Siehe dazu: Wolfgang Demtréder, Springer-Lehrbuch, Ezperimentalphysik 2 — Elektrizitit und Optik, 3.
Auflage, Springer-Verlag, Berlin, Heidelberg, New York, 2004, Seite 193.

3Alle Vielfachen von Eigenvektoren sind auch Eigenvektoren. Deshalb findet man in diesem Fall
bei der Berechnung beispielsweise mit einem ,Online-Eigenvektoren-Berechner” auch die Eigenvektoren

(71) =-iv2-|o") zum Eigenwert +1 und (1) =iv2:|o7) zum Eigenwert —1.
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Die Anwendung des Photonen-Spinoperators auf die Basis-Zusténde |H) und |V') liefert

)

und damit keine physikalisch sinnvollen Ergebnisse, weil |H) und |V') keine Eigenzusténde
zum Operator § sind und weil in diesem Fall komplexwertige Messergebnisse fiir den Spin
resultieren wiirden. Gemé$ den Eigenwertgleichungen (68) und (69) gehoren namlich zum
Operator 3, die Eigenzusténde |oF) () und [07)_p) mit den Eigenwerten & und —7.

I RCOR O 11%

L) —ih|H)

o O+
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9 Tabellen: Jones-Vektoren und Jones-Matrizen

Tabelle 1 Jones-Vektoren

Polarisation Jones-Vektor Bra-Ket-Notation
linear in z-Richtung (horizontal) Jy = (é) |H)
N . . -~ 70
linear in y-Richtung (vertikal) Jy = (1) [V)
linear mit Neigungswinkel +45°  Ji450 = L ( 1) |D) = 1 (|H) +1V))
+45 72\ 2
. . . . - Cos o .
linear mit Neigungswinkel o Jp = ( sin o ) cosa|H) + sina|V)
linkszirkular J; = 1 (1) lot) = 1 (|H) +i|V))
V2 \ i V2
rechtszirkular Jr = % ( _}) o) = % (\H} —i |V>)
elliptisch allgemein J; L ( Fos )
E= Fr o iAq
VEZ,+E3, \ Eoy 7
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Tabelle 2 Jones-Matrizen, Abkiirzung TA fiir Transmissionsachse.

optisches Element Jones-Matrix
Polarisationsfilter — TA horizontal My = <(1) 8>
Polarisationsfilter — TA vertikal My = (8 (1)>
.. . . o 1 1 +1
Polarisationsfilter — TA im Winkel £45 Myy50 = sl o
2 N
Polarisationsfilter — TA im Winkel 9 My = < cos”d  cos¥ Smﬁ)
sindcos?d  sin?9
Polarisationsdreher um Winkel 3 Mg = <C9S p —sinfp >
sin 8 cos 3
|
Phasenverzogerer um Phasendifferenz A@® Mag = < @ )
0 eV
A_Platte mit schneller z-Ach M@ = (L0
5-Platte mit schneller z-Achse ve=\o —1
A-Platte mit schneller y-Achse M) —(—10
) ) A2 T 01
A_Platte mit schneller z-Achse M) = (1 O>
4 MaeT N0 i
%—Platte mit schneller y-Achse M /5% = ( (1) (1)>
A . (2) 1 0
2-Platte mit schneller x-Achse My, = .ﬁ
8 A/8 0 el
%—Platte mit schneller y-Achse M i% = <e104 (1))




10 Paradoxien im Teilchenbild

Man spricht im Zusammenhang mit quantenphysikalischen Ph&nomenen gelegentlich von
sog. Paradoxien, wenn sich diese Phanomene mit den klassischen Vorstellungen von Teilchen
bzw. Korpern nicht erkléren lassen.

So hat beispielsweise ein quantenphysikalisches Teilchen wie das Elektron (fast) nichts
gemein mit einer Billardkugel, aufler dass Elektronen ein Bestandteil der Billardkugel sind.
Wiéhrend man (makroskopischen) Koérpern auf der makroskopischen Skala ein im Rahmen der
Messgenauigkeit ,,exaktes“ Volumen und einen im Rahmen der Messgenauigkeit ,,exakten*
Aufenthaltsort zubilligen kann, besitzen quantenphysikalische Teilchen keine fest umrissene
Gestalt bzw. keine exakten rdumlichen Grenzen und demzufolge auch kein festes Volumen
(siehe Heisenberg’sche Impuls-Ortsunscharfe und Energie-Zeitunschéarfe). Allgemein kann
man deshalb in der Realitit keine Aussage iiber den jeweiligen exakten Aufenthaltsort eines
quantenphysikalischen Teilchens treffen.

Man stoft also zwangslaufig auf Widerspriiche bei dem Versuch, quantenphysikalische Phé-
nomene im Teilchenbild auf klassische Weise zu erkldren. Wir diskutieren diese Problematik
am Beispiel zweier Phianomene.

Reflexionsstrahlteiler

Betrachten wir einen Reflexionsstrahlteiler (halbdurchlassigen Spiegel), der die Intensitit des
einfallenden Lichts bei der Reflexion/Transmission halbiert. Im Wellenbild ist die Beschrei-
bung dieses Phénomens unproblematisch, nicht jedoch im Teilchenbild. Es stellt sich hier die
Frage, was mit dem einzelnen Photon (Wellenpaket) der Energie E = h - v geschieht, wenn es
auf den Strahlteiler trifft. Zu einer Teilung in ein reflektiertes und ein transmittiertes Photon
mit jeweils der halben Energie %E =h- %V kommt es nicht, denn die Lichtfrequenz v bleibt
bei der Strahlteilung erhalten. Die Photonen sind unteilbar. Tatsdchlich kann man messen,
das jedes einzelne Photon mit einer Wahrscheinlichkeit von in unserem Fall 50 % reflektiert
oder transmittiert wird. Das Ergebnis (Reflexion oder Transmission) im Einzelfall ist dabei
nicht vorhersehbar.

Das bedeutet folgendes: Im klassischen Sinne sollte es moglich sein, den Vorgang der
Strahlteilung so zu beschreiben, dass er bei jeder Messung zumindest im Idealfall in der
gleichen Weise ablauft. Das ist hier im Teilchenbild jedoch nicht méglich, was zu dem Schluss
fiihrt, dass das Ergebnis nicht unbeeinflusst von der Messung eintritt sondern durch die
Messung herbeigefiihrt bzw. realisiert wird.

Interferenz am Doppelspalt

Die Intensitatsverteilung im Interferenzmuster beim Doppelspalt zeigt deutliche erste Minima
neben dem Hauptmaximum, was sich mit dem Wellencharakter des Lichts problemlos erkléren
lasst. Allerdings gilt dies auch fiir quantenphysikalische Teilchen mit einer Ruhemasse. Wir
betrachten deshalb im Folgenden die Interferenz von Elektronen am Doppelspalt. Es handelt
sich hierbei um ein ortsabhéngiges quantenphysikalisches Phianomen.

Im Teilchenbild wiirde man zunichst intuitiv stets die Uberlagerung der Elektro-
nentrefferbilder der beiden Einzelspalte auf einem Bildschirm erwarten, wobei es jedem
einzelnen Elektron, wenn es einen Spalt passiert, ,egal“ sein sollte, ob der andere Spalt gedft-
net ist oder nicht. Besitzt ein Elektron, das den Spalt 1 passiert hat, die Wellenfunktion 1 ()
mit der zugehérigen Wahrscheinlichkeitsdichte wy (z) = |¢1(z)|> und ein Elektron, das den
Spalt 2 passiert hat, die Wellenfunktion 1p(x) mit der zugehorigen Wahrscheinlichkeitsdichte
wo(x) = |th2(z)|?, dann entspriche die Uberlagerung bzw. die Summe

[Y1(2)* + 12 (2)* = w(2) (70)
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der beiden Wahrscheinlichkeitsdichten wj(z) und wa(z) dem zu erwartenden Trefferbild.
Dieses Bild besitzt allerdings keine ersten Minima und entsteht nur dann, wenn die Elektronen
an einem oder an beiden Spalten detektiert werden. (70) beschreibt also nicht die Interferenz
der Elektronen am Doppelspalt.

Sind beide Spalte gedffnet und werden die Elektronen beim Passieren der Spalte nicht
beobachtet bzw. detektiert, geht jedes Elektron quasi gleichzeitig durch beide Spalte und
bildet danach einen

Uberlagerungszustand ¢ (z) = () + a(x) (71)
aus den beiden Wellenfunktionen 1;(x) von Spalt1 und 2(x) von Spalt2.

Unbeobachtet lisst sich demzufolge den Elektronen beziiglich der Passage durch
die Spalte kein bestimmter Ort zuordnen.

Das Doppelspalt-Interferenzmuster ergibt sich damit schliellich aus der Wahrscheinlichkeits-
dichte

w(z) = [i(x) + (@) = [1(2)* + (@) + Pi(2)v3 (@) + v (2)a(x)

Interferenzterm

des Uberlagerungszustands (71).

Dem Elektron an dem einen Spalt ist es also nicht egal, ob der andere Spalt ge-
offnet oder geschlossen ist. Und es ist den Elektronen auch nicht egal, ob sie beob-
achtet bzw. detektiert werden oder nicht, denn die Detektion (Beobachtung, Messung)
reduziert die Uberlagerungswellenfunktion bzw. den Zustand v(z) der Elektronen auf
die Wellenfunktionen bzw. Zustinde 11(z) und v(x), was den Kollaps des Uberlage-
rungszustands (71) bedeutet und das Verschwinden des Interferenzterms und damit des
Interferenzmusters zur Folge hat. Es resultiert nach dem Kollaps des Uberlagerungszustands
das Uberlagerungsbild entsprechend |47 (z)[> + |12(x)|? aus den Elektronentrefferbildern
jedes der beiden Einzelspalte.

Dieser Sachverhalt fiithrt zu einer grundlegenden Annahme in der Quantenphysik bzw.
quantenphysikalischen Theorie:

Bereits einzelne quantenphysikalische Teilchen (Elementarteilchen, Photonen,
Atome usw.) gehorchen dem Superpositionsprinzip und konnen sich demzufolge
in einem Uberlagerungszustand verschiedener quantenphysikalischer Zustinde
befinden.
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11 Grundlegendes zur Wellenoptik

Quellen und weiterfithrende Literatur

e Wolfgang Demtroder, Springer-Lehrbuch Experimentalphysik 2, Elektrizitdt und Optik, Springer-Verlag,
Berlin, Heidelberg, New York, 3. Auflage, 2004.

e Eugene Hecht, Optik, Oldenbourg-Verlag, Miinchen, 4. Auflage, 2005.

e Rudolf Gross, WMI — Lecture Notes — Kapitel 5, Beugung und Interferenz,
https://www.wmi.badw.de/teaching/Lecturenotes/Physik3/Gross_Physik_III_Kap_5.pdf

e Falko Jahn, Masterarbeit,
https://monami.hs-mittweida.de/frontdoor/deliver/index/docld/2219/file/
Masterarbeit_Falko_Jahn_Bibliotheksexemplar.pdf

11.1 Der Begriff ,,Wellenoptik*

Die geometrische Optik (Strahlenoptik) beschéftigt sich im Wesentlichen mit der Refraktion
(Brechung) und der Reflektion von Licht auf der Grundlage eines Minimalprinzips, dem
Fermat’schen Prinzip:

Bei Reflektion bzw. Brechung laufen die Lichtstrahlen von der Quelle zum
Empfianger so, dass die Lichtlaufzeit minimal ist.

In der Wellenoptik ist die Wellennatur des Lichtes dominierend. Dabei wird Licht als ein
Feld elektromagnetischer Wellen (elektromagnetisches Wellenfeld) betrachtet. Licht setzt
sich also zusammen aus einem Magnetfeld B(%,t) und einem elektrischen Feld E(7,t). Weil
das elektrische Feld effektiver auf elektrische Ladungen wirkt als das Magnetfeld, bezeichnet
man E(F, t) auch als optisches Feld. Die Wellenoptik beschéftigt sich im Wesentlichen
mit Diffraktion (Beugung) und Interferenz (Uberlagerung, Superposition) von Licht auf der
Grundlage des Fresnel-Huygens-Prinzips' :

Jeder Punkt einer Wellenfront (der Primérwelle) ist Quelle sekundérer Elementar-
wellen mit der gleichen Frequenz wie die der Primérwelle. In jedem nachfolgenden
Punkt ergibt sich die Amplitude des optischen Feldes durch die Interferenz aller
dieser sekundéiren Elementarwellen.

Weil Beugung und Interferenz allgemein vergesellschaftet auftreten, ist es um so wichtiger,
sie begrifflich voneinander klar zu trennen:

Interferenz tritt ein bei der Uberlagerung von mindestens zwei notwendigerweise
kohérenten Teilwellen (d.h. urspriinglich voneinander getrennten kohérenten

Wellen).

Beugung tritt ein bei der rdumlichen Begrenzung von Wellenfronten (z.B. an
einer Kante oder durch eine Blende). Von den Réndern der Begrenzungen bzw.
Hindernissen werden zur einlaufenden Primérwelle phasenkohérente Teilwellen
(Sekundéirwellen) in alle moglichen Richtungen ausgesandt. Diese Teilwellen
interferieren dann miteinander.

'Das (urspriingliche) Huygens’sche Prinzip besagt, dass jeder Punkt einer priméren Wellenfront Ausgangs-
punkt kugelformiger sekundéarer Elementarwellen ist, die in der Folge eine Wellenfront (Einhiillende) bilden.
Damit allein lasst sich das frequenzabhéngig-unterschiedliche Verhalten bzw. die Interferenz der Wellenfronten
leider nicht ausreichend erkléren.
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Abb. 14 Fraunhoferbeugung. Die Punktquelle ) liegt im vorderen Brennpunkt der Sammellinse L1, die
deshalb die von @ ausgehenden Kugelwellen in ebene Wellen transformiert (Kollimator). Die Abbildungs-
ebene o liegt in der hinteren Brennebene der Sammellinse Lo, sodass die einfallenden ebenen Wellenziige
auf o konvergieren, in der Abbildung beispielsweise in P fiir einen bestimmten Wellenzug. Deshalb entsteht
das Interferenzmuster, beispielsweise ein Streifenmuster bei der Beugung am Einfachspalt, in praktikabler
Entfernung auf o und nicht erst nahezu im Unendlichen. (Abbildung nach E. Hecht, Optik, 4. Auflage,
Oldenbourg Verlag, Miinchen, Wien, 2005, Seite 723)

Von einer Punktquelle @) gehe eine Kugelwelle aus. Diese treffe auf einen undurchsichtigen,
ebenen Schirm X mit einer Offnung (Aperturblende) im Abstand QX . Der durch die Offnung
hindurchtretende (auslaufende) Anteil der Kugelwelle breitet sich dann hinter der Offnung
aus und treffe dann schliefllich auf die Beobachtungsebene o . Die Ebenen X und o sollen
parallel zueinander verlaufen. Der Abstand zwischen der Mitte der Offnung auf X und
einem Beobachtungspunkt P auf o sei Y P. Das Licht wird beim Passieren der Offnung
gebeugt. Abhiingig von den Abstinden QX und Y P konnen wir jetzt zwei Arten der
Beugung unterscheiden. Wenn @) und P sehr weit von X entfernt sind, dann sind die auf
die Offnung einlaufende Welle und die von der Offnung auslaufende Welle als nahezu eben
anzusehen, sodass die Weglangenunterschiede in Richtung P lineare Funktionen von den
Offnungsvariablen sind. Wir sprechen dann von Fraunhoferbeugung oder Fernfeldbeugung
(Linearitat). Sind @ oder/und P jedoch so nahe bei X', dass ein- oder/und auslaufende
Welle nicht mehr als eben betrachtet werden kénnen und die Wegldngenunterschiede nicht
mehr linear von den Offungsvariablen abhingen, so spricht man von Fresnelbeugung
oder Nahfeldbeugung (Nichtlinearitit). Als Faustregel fiir den Fraunhofer-Grenzfall beim
Ubergang von der Fresnel- zur Fraunhoferbeugung gilt

2
Fraunhoferbeugung < R > a

A
Dabei ist R der kleinere der beiden Abstinde QX und Y P, a ist die grote Ausdehnung
der Offnung und X\ die Wellenléinge des Lichts. Die Fraunhoferbeugung kann man als den
yeinfach® herzuleitenden Spezialfall der Fresnelbeugung betrachten. In der Abbildung 14
wird dargestellt, wie sich die Fraunhoferbeugung mit Hilfe von Sammellinsen platzsparend
realisieren lasst.
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11.2 Fraunhoferbeugung

11.2.1 Elementare Herleitung im Reellen

Kurzdarstellung in Anlehnung an
Gerthsen, Physik, Springer-Verlag, 20. Auflage, 1999, Seite 517 bis Seite 522 und
Paul A. Tipler, Physik, Spektrum-Verlag, 1. deutsche Auflage, 2000, Seite 1120 bis Seite 1131.

Wir betrachten in diesem Abschnitt der Einfachheit halber nur den Fall, dass die Fronten
einer ebenen Lichtwelle komplanar auf einen ebenen Schirm treffen, der lichtdurchléssige,
schmale, gerade, parallel verlaufende Spalten besitzt (Einfachspalt, Doppelspalt, Strichgitter).
Somit haben alle Elementarwellen in der Ebene der Spalten die gleiche Phase ®.

a) Vorldufige Amplitudenformel

Auf der Grundlage von Abbildung 15 nehmen wir an, dass die Breite a der Spalten so klein
ist, dass diese Spalten Reihen von kohdrenten Punktquellen mit dem Reihenabstand g
darstellen. So erhalten wir ein Strichgitter mit extrem schmalen Spalten (Strichen).

y

Abb. 15 Strichgitter und Schirm in mdglichst groBem Abstand ¢ zur Darstellung des Interferenzmusters.
Gitterkonstante g, Strichzahl N, Spaltbreite a, Spalt-Schirm-Abstand ¢ mit £ > g, Winkel ¢ zwischen
der Wellenfrontnormalen und der Spaltnormalen, Gangunterschied As.

Im Fall £ — oo verlaufen die von den beiden dargestellten Punktquellen ausgehenden ebenen Wellenziige
parallel zueinander und in Richtung zum Punkt y des Interferenzmusters auf dem Schirm.

Die Phasendifferenz § zwischen den Wellenziigen benachbarter Spalten ergibt sich im Bogen-
maf} [rad] aus dem Laufwegunterschied oder kurz Gangunterschied As wie folgt:

0 As g-sing . _ 2m .
T < Phasendifferenz § = 3 g-sinp=Fk-As. (72)
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Abb. 16 Der korrekte Gangunterschied As = s5 — s7..

Anhand der Abbildung 16 zeigen wir, dass der in Abbildung 15 dargestellte Gangunterschied

As = g-singp fir £> g

eine gute Ndherung ist und an den Grenzen ¢ = 0 und ¢ = 7 mit gsin ¢ {ibereinstimmt:
g L

c==, a= ,
2 Cos

b=csinp, h=ccosyp,

As = sy —s1 = /(a+b)2+h2—/(a—b)2+h2

= ¢ + ¢sin 2+02 cos?2 - ¢

- cos ¢ 4 4 cos ¢
lin%As = VP42 — i+ =0 = gsin0), O
o—

|G G
) - ()] -

2
— c¢sin cp) +c?cos?p =

lim As =

™
P35

2c = g = gsin(g).D

Hauptmaxima bei konstruktiver Interferenz:

|

As = g-sinp = m-X\,
2
6 = %Singpé m - 2T, m=20,1,2,3,...
. A . ) 1
= sihnp = m-—, singp ~ A\, singp~ —.
g

Je grofler A,

Fiir konstruktive Interferenz gilt: i
Je kleiner g,

} desto grofer istp.

Minima bei destruktiver Interferenz:

As =

90

g - sin

2mg .
— Sl
A

o

1
m —
2

)

ncpé 2m+1)m,

m=0,1,2,3,....



4 \ Abb. 17 Uberlagerung vieler gleichstarker Wellen mit der Phasenver-

1 s schiebung § zwischen je zweien, z. B. c!.er Teilwellen aus den Spalten eines

2 T Beugungsgitters. Darstellung dieser Uberlagerung durch ein Zeigerdia-

f gramm.
A Vervollstandigt man das Diagramm durch Aneinanderfiigen weiterer Zeiger
g / (Vektoren), so erh3lt man einen kreisférmigen Polygonzug mit dem Radius
T.
/'%5/% (Abbildung und Legende nach Gerthsen, Physik, Springer-Verlag, 20. Auf-

_ lage, 1999, Seite 518)

Von jedem der N Gitterspalten (Striche) geht eine Reihe von Kugelwellen aus, d. h., jeder
Spalt liefert ein Welle mit der Amplitude A’. Bei ¢ =0 = ¢ = 0 gilt infolge konstruktiver
Interferenz aller A’

A

o) = Ao =N-A' = Ay .

Bei ¢ # 0 ist wegen der Phasendifferenz § = 2%9 sin
die Phasendifferenz A® zwischen dem ersten und dem letzten Spalt des Gitters A@ = (N—1)-§
und fiir eine grofe Gitterstrichzahl N n&herungsweise

Asﬁ:N-(S:N-Q%singo.
Entsprechend dem Zeigerdiagramm erhalt man daraus die von ¢ abhingige Amplitude A,

(Betrag der Vektorsumme bzw. Linge der Sehne des Polygonzuges fiir einen bestimmten
Winkel ¢) wie folgt:

L4 NG A
in(1AP) =sin(iN§)=2="2 = A, =2r-sih— & r=—F*_.
sm(2 ) sin (3 ) . 5y o rosin = r 2sinN75

Fir N =1 erhélt man r = ﬁ. Dieses in A, = 2r - sin NT‘S eingesetzt ergibt
Al N§ sin 22
A, = 2 5 |sin— = Al g .
2sin § 2 sin §
Substitution von § durch QL/\g sin ¢ liefert schlieflich die
vorliufige Amplitudenformel fiir die Interferenz am Strichgitter:
/ sin (% sin gp)
A, = A 74
v sin (L):q sin go) (74)
e Je kleiner g ist, desto breiter wird das Spektrum gespreizt, denn
. . 1 . 1
As=g-sinp = sinp=As-— = sinpx-—. (75)
g g

o Aus sinp o A folgt, dass Licht mit groBer Wellenlédnge (z. B. rotes Licht) stéarker
gebeugt wird als Licht mit kleiner Wellenlédnge (z. B. blaues Licht).

e Ein Gitter macht um so schérfere Spektrallinien, je mehr Striche es hat.

e Zwischen 2 Hauptmaxima liegen stets N — 1 Minima und N — 2 Nebenmaxima.
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b) Amplitudenformel fiir die Beugung und Interferenz am Einfachspalt

Die Herleitung der Amplitudenformel fiir die Beugung und Interferenz am Einfachspalt erfolgt
auf der Basis der vorldufigen Amplitudenformel (74). Diese wurde mit Hilfe des Konzepts
der Vektoraddition bzw. des Zeigerdiagramms entwickelt, wobei die Spaltbreite des Strich-
gitters als extrem klein und somit der einzelne Gitterspalt als eine Reihe von Punktquellen
angenommen wurde. A" war dabei die aus nur einer dieser Reihen von Punktquellen (aus
nur einem Strich) resultierende Amplitude.

Den Einfachspalt erhélt man jetzt, indem beim Strichgitter solange die Gitterkonstante
g verkleinert und gleichzeitig die Strichzahl N erhoht wird, bis schlief8lich ein Einfachspalt
mit der endlichen Spaltbreite a resultiert. Wir kénnen also sinngeméfl oder besser gesagt
symbolisch schreiben:

%IIE)I% ZGltterspalten ~ N-g =a & g =

N—o0

a
N .

Aus dem Strichgitter ist jetzt ein Einfachspalt geworden, der gleichsam aus nahezu unendlich
vielen, nahezu unendlich schmalen Gitterstrichen besteht, die insgesamt die Einfachspaltbreite
a ergeben. Damit wird aber auch die Phasendifferenz § = 2% sin ¢ zwischen den Wellenziigen

aus benachbarten Gitterstrichen verschwindend klein. Fiir kleine ¢ konnen wir aber

.0 0
sin - = —
2 2
schreiben und erhalten so mit (72)
si 0 si (Wg si ) "9 ; (76)
in- =sin(—~singp) = —siny.
2 N )TN

Beriicksichtigen wir (76) in der vorldufigen Amplitudenformel (74) und setzen wir fiir g dort
auflerdem % ein, so resultiert

. Nrm-% . . . . .
A = A St < xoem S0) = A s (% Sin S0) NA w
® T Ay sin rsing

und daraus mit NA" = A4 = Ag schliellich die Amplitudenformel fiir die Beugung und
Interferenz am Einfachspalt:

sin (% sin gp)

Ay = Ay (77)

Ta o3
Nosing

A, ist der Betrag der Vektorsumme, also die Lénge der Sehne des Polygonzuges.

Ap ist die resultierende Amplitude fiir die Ausbreitungsrichtung mit ¢ = 0, also das

Maximum von A,, denn nach der Regel von del’Hospital ist lim,_q Sigx =1.

e Durch das Anwachsen des Sinus im Nenner nehmen die Maxima bei der Beugung am
Einfachspalt zur Seite hin sehr schnell an Hohe ab.

o Mit (75) und wegen g — 0 sowie N — oo existiert nur ein zentrales (Haupt-)

Maximum. Alle anderen Hauptmaxima wandern unendlich weit seitwérts, sodass nur
unendlich viele Nebenmaxima tibrigbleiben.
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o Die Phasendifferenz (zwischen der Phase an dem einen Spaltenrand und der Phase am
anderen Spaltenrand) fiir einen bestimmten Winkel ¢ beim Einfachspalt ist

2ma 2msin @

AP =—sinp=—-

S Sing 3
Es gilt also A® ~ a, d.h., dass eine bestimmte Phasendifferenz A® mit abnehmender
Spaltbreite a erst bei einem grofleren Winkel ¢ erreicht wird. Das Beugungsspektrum
wird also bei abnehmender Spaltbreite gespreizt und das zentrale Maximum wird dabei
gleichzeitig breiter und niedriger.

(78)

c) Amplitudenformel fiir die Beugung und Interferenz am Strichgitter

Die endgiiltige Formel fiir die Beugung und Interferenz am Strichgitter erhélt man, wenn
in (74) fiir die Amplitude A’ des einzelnen Gitterspalts die Amplitudenformel (77) des
Einfachspalts einsetzt, denn
s sin (5 sin ¢)
Ta o3 :
T sin
Dadurch wird in der Amplitude A, jeder einzelne Gitterspalt als Einzelspalt mit der endlichen
Spaltbreite a berticksichtigt. Insgesamt ist dann die endgiiltige Amplitudenformel fiir das

Strichgitter

. N .
sin (B sing) S0 ( Ao sin 90)
Ago = AO Ta . . s TG s . (79)
T sin @ sin (%2 sin o)

Wie man sieht, resultiert fiir N = 1 die Amplitudenformel fiir den Einfachspalt, fir N = 2
die Amplitudenformel fiir den Doppelspalt usw.

d) Intensitatsformel fiir die Beugung und Interferenz am Strichgitter

Die Intensitét einer ebenen Lichtwelle ist proportional zum Quadrat ihrer (Feldstérken-)
Amplitude:
A2 xI,, Ag=N*-A%xly = Igx N>,

Quadrieren von (79) liefert folglich die Intensitétsformel fiir die Beugung und Interferenz am
Strichgitter:

sin? (I sin ) sin” (@ sin 90)
Lo = 1o Ta o 2" “gin? (% sin (80)
(A sin cp) ( py <P)

Bei der Anwendung dieser Intensitdtsformel kann man den Doppelspalt als ein Strichgitter
mit NV = 2 und den Einfachspalt als ein Strichgitter mit N = 1 betrachten.

e) Intensitiatsformel fiir die Beugung und Interferenz am Einfachspalt

Somit ist die Intensitatsformel fir die Beugung und Interferenz am Einfachspalt:

sin? (% sin gp)

I, =1
v 0 (”T“singp)2

(81)

Das zentrale Maximum wird beim Einfachspalt auch Hauptmaximum genannt. Daneben
existieren nur noch Nebenmaxima der Ordnung m = 1, 2, 3, ... , deren Intensitdt mit
ansteigender Ordnung stark abnimmt.
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Der Abstand zwischen dem ersten Intensitdtsminimum links und dem ersten Intensitatsmini-
mum rechts vom zentralen Maximum kann als Breite des zentralen Maximums angesehen

werden (siehe Abbildune 18).
y

Breite des zentralen
Maximums

x10

é

Abb. 18 Die Breite des zentralen Maximums bei der Beugung am Einfachspalt. Weil die Intensitat der
Nebenmaxima sehr stark abfallt, sind diese zur Verdeutlichung um das 10-fache Gberhéht. Der Vollstandig-
keit halber wird der Amplitudenverlauf des E-Feldes langs der y-Achse der Intensitat gegeniibergestellt.
(Abbildung nach dem Springer-Lehrbuch Langkau, Scobel, Lindstrom, Physik kompakt 2, Elektrodynamik
und Elektromagnetische Wellen, Springer-Verlag, Berlin, Heidelberg, New York, 2. Auflage, 2002, Seite
250)

Dem Zeigerdiagramm entsprechend liegen der erste Nulldurchgang der Amplitude links und
der erste Nulldurchgang der Amplitude rechts vom zentralen Maximum bei demjenigen
Winkel ¢, der im Zeigerdiagramm einen einfachen geschlossenen Vektorkreis liefert, d. h.
geméaB (78) bei '

a-singp |

Bildet das Zeigerdiagramm einen Vollkreis, so ist die Vektorsumme namlich gleich null, d. h.
die Teilamplituden 16schen sich in ihrer Gesamtheit aus (destruktive Interferenz).? Der zum
ersten Nulldurchgang der Amplitude gehérende Winkel ¢ ist somit
. A A
& singp = — = © = arcsin — .
a a

Damit betrégt die Breite des zentralen Maximums auf dem Schirm (s. Abb. 18)

2-/¢-tan (arcsin )\> .

a
Minima und Maxima beim Einfachspalt:

Hauptmaximum bei ¢ =0.

1\ A
Nebenmaxima bei sin ¢, = (m + 2) -, m=1,23,....
a
A
Minima, bei sing, =m —, m=1,2,3,....
a

2Der erste Nulldurchgang der Amplitude zu beiden Seiten des zentralen Maximums bildet die ersten
Intensitdtsminima und bestimmt die Breite des zentralen Maximums.
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Minima und Maxima beim Strichgitter:

A
Maxima bei siny,, =m —, m=20,1,2,3,....

A

Minima  bei sin ¢, =m ——, m=1,2,3,....
N-g

f) Spektrales Auflésungsvermogen des Strichgitters

Die Herleitung erfolgt nach dem Lehrbuch von Gerthsen, Seite 522, und auf der Grundlage
von Formel (80) sowie speziell auf der Grundlage der vorldufigen Amplitudenformel (74)

, sin (% sin <p>
A,=A"-
? sin (52 sin ¢)
denn insbesondere das breite zentrale Maximum von A’ {iberlagert den Quotienten in (74)
nur und ist fiir das Auflésungsvermogen des Strichgitters nicht relevant.

Der Quotient auf der rechten Seite von (74) ist verantwortlich fiir die Anordnung der
Hauptmaxima und Minima im Gitterspektrum:

e Die Maxima liegen dort, wo sowohl Zahler also auch Nenner verschwinden bzw. gegen

Null gehen:
2rg . ! . m
5:T-smcpm:m-27r & singp,=——, m=0,1,2,3, ...
Nenner:  sin (%2 sin ¢p,) = sin (mn) =0
Zahler: sin (N -mm) =0
. mA

Maximum m-ter Ordnung;: Om ~— . (82)

9

e Die Minima liegen dort, wo nur der Zdhler verschwindet.

Zahler: sin (”TNQ sin cp) 20 bei sinp # 0 bzw. ¢ #0, d. h. wenn

A

c—_— =1,2,3,....
N -g m

N-As=N-g-singy, =X = sing, =m

Beim ersten Minimum bilden die Vektoren der N Gitterquellen einen einfachen ge-
schlossenen Kreis und loschen sich somit aus. Es gilt dann

2
N'5:N'%sinap:2w.

A(sing) = (m+1) ﬁ -m ﬁ = ﬁ liefert somit den Abstandswinkel

A

Ap~ ——
(p N.g

des ersten Minimums von einem Hauptmaximum.
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o Die Maxima von Licht mit der Wellenldnge A + A\ besitzen geméf (82) die Winkel

- _mA+AN)  mA m- AN

g g g

versetzt.

und liegen damit gegeniiber Licht mit der Wellenldnge A um den Winkel m'TA)‘

Die Maxima (Spektrallinien) des Lichts mit A und des Lichtes mit (A + A)\) lassen sich
trennen, wenn das Maximum (der Ordnung m) des Lichts mit (A + A)) in das erste
Minimum des Lichts mit A fallt oder sogar vom Maximum (der Ordnung m) des Lichts
mit A noch weiter entfernt ist, also wenn gilt

WADY A
= >Apx — &
g g
.. .. A
spektrales Auflosungsvermogen m - N > )

Das Auflésungsvermdogen ﬁ eines Gitters wéchst proportional mit der Anzahl der

Striche (Strichzahl N) des Gitters und der Ordnung m des verwendeten Maximums.
Das Auflosungsverméogen eines Gitters hdngt nicht von der Gitterkonstante g ab, auch
wenn gilt:

Je kleiner g, desto weiter wird das Spektrum gespreizt.

ﬁ darf nicht gréfer als das Gitterauflosungsvermogen m - N werden, damit das
Spektrum des Lichtes mit der Wellenldnge A + A\ noch aufgelést werden kann. Je
grofier also das Auflésungsvermogen m - N ist, desto kleiner darf A\ sein, d. h., desto
besser lassen sich kleine Frequenzunterschiede des Lichtes spektral auflésen.



11.3 Fresnel’sche Zonen
Quellen

e Wolfgang Demtrdder, Springer-Lehrbuch Experimentalphysik 2, Elektrizitdt und Optik, Springer- Verlag,

Berlin, Heidelberg, New York, 3. Auflage, 2004, Abschnitt 10.6.1 Fresnelsche Zonen, Seite 322 bis Seite 325.

e Eugene Hecht, Optik, Oldenbourg-Verlag, Miinchen, 4. Auflage, 2005, Abschnitt 10.3.1 Die freie Ausbreitung
einer Kugelwelle, Seite 779 bis Seite 785.
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Abb. 19 Fresnel'sche Zonen. Dargestellt sind nur die ersten 8 Zonen. TE steht fiir Tangentialebene an
den Punkt @) der dargestellten Kugelwellenfront.

e Die von der Punktquelle O ausgehende und sich frei im Raum ausbreitende Kugelwelle,
die Primarwelle, sei

B = By elbRwt) _ % oi(kR—wt) (83)
Die Amplitude Eg = % ist also umgekehrt proportional zum Radius R der betrachteten

Kugelwelle. Wie man sieht, kann A nicht die Feldstdrkenamplitude sein, weil A nicht

die MaBeinheit (Dimension) von E besitzt. Weiterhin besitzt die Funktion Egr(R) bei
R = 0 eine Singularitét.

Nach dem Huygens’schen Prinzip sind alle Punkte @ der Kugelfliche mit Radius R
um O Ausgangspunkte neuer Kugelwellen, den Sekundarwellen.

Mit diesem Ansatz berechnen wir das E-Feld in einem Punkt P, der lings OP den
Abstand rp von der betrachteten Kugelfldche besitzt (siche Abbildung 19).

Die Abstédnde zwischen den Punkten @ auf der Kugelfliche und dem Punkt P bezeichnen
wir mit 7.

Die Strecke OP besitzt die Linge

R4+ryg = r(a=0)=rg.
o Der Kreis, der von einem bestimmten r = r(«) auf der Kugelfliche gebildet wird,
besitzt den Radius

0 = R-sina.
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¢ Die Fresnel’sche Zonen bzw. Halbperiodenzonen auf der Kugeloberfliche mit dem
Radius R erhalten wir — abhédngig von r — wie folgt:

?”0:7“04-0‘%:7“0

7“127‘04—1'%

7'2:7“04—2'% = rm:r0+m'%, m=1, 2, 3,
7‘327‘04—3'%

Die 1. Zone erstreckt sich demnach von r¢ bis r1 = r¢ + % und die

von Tp,_1 :ro—|—(m—1)-%
m-te Fresnel’sche Zone

N[>

bis Tm =To+m -

e Die Anwendung des Kosinussatzes

5 Abb. 20 Kosinussatz: a? = b®> + ¢? — 2bccos v .

auf das Dreieck OQP liefert

72 = R* 4+ (R +79)® — 2R(R + 1¢) cos o

d , dr .
= 7 —27“£—2R(R+7”0)sma &
1
R sinada = R—i—?‘ordr' (84)

« Wir betrachten ein ring- bzw. kreisféormiges und konzentrisch um OP gelegenes Fli-
chenelement dS innerhalb einer Fresnel’schen Zone. Alle Punktquellen in d.S emittieren
kohérent und phasengleich mit der zugehorigen Primarwelle. Die dabei entstehenden
sekundéren Elementarwellen (Sekundérwellen) kommen demzufolge nach Zuriicklegen
des Weges r zum Zeitpunkt ¢ mit der Phase [k-(R+r) — wt| phasengleich im Punkt P
an. Gemaf (83) ist Eg = A/R die Amplitude der Priméarwelle auf dsS.

E’ sei der Feldstdrkebeitrag von ER pro Fliacheneinheit auf dS, also sinngeméfl dEg /dS,
fur die Sekunddrwellen. Offensichtlich ist der Beitrag von Eg zur Feldstédrke der
Sekundéarwellen in P proportional zu E’ mit der Proportionalititskonstante g :

E/O(ER = E/:q'ER. (85)

e Weiterhin ist der Feldstarkebeitrag durch die Sekundérwellen in P abhéngig vom Winkel
9 (siehe Abbildung 19), d. h. abhéingig von der ,,Gerichtetheit* der sekundéren Quellen
auf der priméren Kugelwellenfront. Diese ,,Gerichtetheit* wird in diesem speziellen
Zusammenhang beschrieben durch den?

3Auf den ersten Blick wiirde man meinen, dass der Feldstérkebeitrag in P durch die Sekundérwellen
proportional zu einer Richtungsfunktion f(¥) = cos? sei, wovon auch Fresnel zunédchst in seiner Theorie
ausging. Warum das nicht so ist, wird in der skalaren Beugungstheorie von Kirchhoff deutlich. Auf den
Neigungsfaktor in allgemeiner Form gehen wir im Abschnitt 12.4 gesondert ein.
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1

Neigungsfaktor K = K(¥) = = (1 +cos?d) .

N |

Fiir den Feldstérkebeitrag der Sekundérwellen im Punkt P gilt
E(P) x K .

Fiir unsere Kugelwellenfront mit ¥9 = 0 = cosvy = 1 bedeutet das (sieche Abbildung
19)

1
K@) = 5 (1+cos?) x E(P). (86)
Und bei 99 = 0 und ¥ = 0 ist dann K = 1 und @ liegt innerhalb der Strecke OP.

Weiterhin bedeutet das, dass antiparallel zu k laufende Sekundirwellen (bei entspre-
chend riickwértiger Lage von @) wegen

V=7 = cosv=—1 = KW)=-(1-1)=0

N

keinen Feldstirkebeitrag in P leisten. O liegt dann innerhalb der Strecke QP.

Mit (85) und (86) machen wir jetzt den folgenden Ansatz:

Das um OP ring- bzw. kreisformige Flichenelement dS mit dem zugehérigen Abstand
r zum Punkt P liefert zur Feldstédrke in P den Beitrag

dE(P) = 6.K.£/ei[k(R+r)—wt}dS _ é,K.@ei[lﬂ(R—H)—wt]dS
r r
und mit der Zusammenfassung der Konstanten Cund g zu C -q = C schlieBlich
ERr .

r

Der Neigungsfaktor K = 3 (1 + cos®) beziiglich der priméren Kugelwellenfront be-
schreibt die Abhédngigkeit der von dS in Richtung P abgestrahlten Amplitude vom
Winkel 9. Da K (¥) eine nur langsam verénderliche Funktion ist, nehmen wir K iiber je-
de einzelne Fresnel’sche Zone als konstant an und schreiben K, fiir den Neigungsfaktor
der m-ten Fresnel’schen Zone.

Das Flachenelement dS besitzt den Kreisumfang 27 -0 = 27 - Rsina
die Breite R -da und folglich die Fléche

dS = 27rRsina-Rda = 27R- Rsinada .

Aus dem Vergleich mit (84) resultiert

2T R

ds =
R+T0T

dr .

Somit ist d.S nur noch von r abhéingig.

Durch Integration iiber (87) kénnen wir jetzt den Beitrag FE,, der
m-ten Fresnel’schen Zone zum FE-Feld im Punkt P berechnen:

Tm Tm
Er . 2R
E, = /dEm = /C.Km.Rel[k(R+r)wt]_7TTdr’
r R+1rg
Tm—1 Tm—1

99



R+rg
Tm—1
2R ip 1 o]
E, = C-KyEg - el(kR wt) | 7{: . elk:r ,
+ 70 1 S—
Zwischenrechnung
Mit
2
k - 7” ,
A
T'm = 10+ mE )
AA
Tme1 =T1o+(m—1)= = ro+m=—=,
2 2
e17r — e—i7r - 1
ist
|:eikr:| o — okt _ gkt Gik(ro+m3) _ ik(ro+m3 -3
Tm—1
— okt Gikgm _ Gikro | Jikgm | —iky _ Jikro | ikgm (1 _ e—ik%)

_ eikro . (eiw)m . (1 _ efivr) ’

|:eikr:| — eik'ro . (_1)777, .9
Tm—1

Em — C X KmER 2TR ei(kawt) . i . eikT‘Q . (_1)m .9

R+To ik)

2TR . A

= —i(—=1)™.C - K,,Fg —— ¢l [k(B+ro) —wt] 2

1( ) C RR‘i‘rOe pu

R+rg ’

2.i\ K- Eg-R | B
E,(P) = C- (-1 m+1 m i[k(R+ro) — wt] ] S8
(P) = C-(-) o (59)

e Die Gesamtfeldstiarke im Punkt P ist folglich

N
= m = |E1] — |E2 3| — | B4 50— N
E(P) E |Ev| = |Ea| + |Es| — |E4| + | E5| +|En|

m=1

— (3B +31E) = | Bal+ (31 Bl + 31 Bs| ) — | Bl + (15 |+ 31 Bl ) — - +| Ew] . (89)
Dabei haben wir den Vorzeichenwechsel von F,, beim Zonenwechsel beriicksichtigt.

o Mit K,, verandern sich auch die |FE,,| nur sehr langsam, sodass

1 1 1
|E| =~ §(|Em—1’ + |Em+1‘) A §|Em—1’ — | Em| + i‘Em+1| ~ 0.

100



Dem entsprechend konnen wir (89) umordnen und erhalten

B(P) = §|B1l+ (31B1| = |Bal + 31Bs]) + (31Bs] = |Eal + 31B5]) + - +3[Ew - (90)

~0 ~0

Der Beitrag En der N-ten Zone, d. h. der letzten Zone um 9 = 7, kann wegen Ky =0
vernachléssigt werden. Es verbleibt als Gesamtfeldstarke im Punkt P mit (88) fiir E;
und mit Fg = A/R

1 1 C-2-iX-K1-Er-R -
E(P) ~ -F1 = - i[k(R+ro) —wt]
Py~ 58 =3 R+ ro ¢ ’
- A [ (Rtro) — wt]

e Fir die Bestimmung von C' benutzen wir einerseits, dass fiir £; bzw. in der ersten
Zone cos(¥ = 0) =1 = K; =1 gilt, und andererseits den Vergleich von (91) mit der
Feldstérke

B(P) = — A ilh(Btr)—ot]

R+ rg ’

die im Punkt P, d. h. im Abstand R+rq von O, durch die von O ausgehende Priméirwelle*
(83) erzeugt wird:

A A A
C.-Ky-i\- — C-i\- -
VY R "Ry T Rero

1

“T 0
e Berechnung von g:
Mit
c = R+ry,
Ll

sina =

R?
R-cosa = R-V/1—sin2a = VR - 02,

z =c¢— Rcosa = c—/R?>—p?

erhilt man
P2 = 242 = P+ A4 R—?—20VRE— 2,

r? = 4+ R*—2c/R?2— 0> &
2+ R? —r?
/R2_ g2 = _

2c

“Der in (91) auftretende Faktor i = ' kann in der Exponentialfunktion beriicksichtigt werden und veréndert
diese dann zu ! [FUH+70) —wt+ 51 Dag hedeutete eine Phasenverschiebung der Sekundérwellen gegeniiber der

Primérwelle um Z. Allerdings ist eine Diskussion dieses Problems in diesem Zusammenhang nicht notwendig.

PR

101



Quadrieren und Auflésen nach g liefert schliellich

\/4 c2R? — (62 + R2 — r2)2
- 2¢ '

0

Dies lasst sich leicht iberpriifen. R = 3, r = 4 und ¢ = 5 beispielsweise ergeben o = 2,4
und sina = 0,8 bzw. cosa = 0,6 sowie Rcosa=1,8.

Fiir sehr grofle R bzw. fiir R — oo geht die Kugelflache in Abbildung 19 iiber in eine
Ebene, d. h. die Kugelwellenfront der Priméirwelle geht iiber in eine ebene Wellenfront.
Das fithrt zu einer wesentlichen Vereinfachung der Berechnung von o (siehe Abbildung

21):
ebene|WeIIenfront
|
Q k
Abb. 21 Zur Berechnung von g bzw. g,, fir R — p r

- B

To

=P = o=\/r2—1?
bzw. )
2 A2 2 m= o
0y, = (ro—l—m5) -1y = TA +mroA =
m2
Om = T)\2+mTO)\ fir R — oo

Wie man sieht, hdngen Breite und Lage der Fresnel’schen Zonen neben A in jedem Fall
insbesondere von rg ab.

o Néherung von g, fiir A < 7o und fiir kleine m (siehe Abbildung 19):

~ 2 2
Om = A\[TH — 715 -

Wir nédhern weiter mittels Taylor-Entwicklung des Radikanden bis zur 1. Ordnung an
der Stelle A =0:

r0+m%)2f ry = r%+(%)\)2+rom)\frg

= mTz/\2+rom)\ =

2
r2—rd ~ [@A—i—rom} A= mrgA =
A=0

Om ~ \V/m-1g- A fir ro> A |. (92)

Mit dem Konzept der Fresnel’schen Zonen lassen sich einige Phédnomene erklaren, die auf
den ersten Blick merkwiirdig erscheinen, weil sie sich durch die (anschauliche) geometrische
Optik nicht beschreiben lassen. Wir zeigen dies im Folgenden an drei Beispielen :
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1. kreisformige Blende

Zwischen O und P positionieren wir einen lichtundurchléssigen Schirm mit einem
zentralen kreisformigen Loch, d. h. einer Blende, im Abstand ry vor dem Punkt P. Der
Durchmesser D der Blende sei gerade so grofi wie die 1. Fresnel’sche Zone, nimlich®

A 2
bz E g =)

Somit erreicht nur das Licht aus der 1. Fresnel’schen Zone den Punkt P. Gemé&f (88)

und mit K1 = {5 sowie Eg = 4 ist die Feldstirke in P folglich

A .
E P = E = 27 l[k(R-H“o)—wt}
(F) =B =2 |

also doppelt so grofl wie ohne Schirm. Und die daraus resultierende Intensitét in P ist
viermal so grof§ wie ohne Schirm.

Ursache dafiir ist die fehlende (insbesondere destruktive) Interferenz mit dem Licht
aus den iibrigen Fresnel’schen Zonen.

2. kreisformige Scheibe

Zwischen O und P positionieren wir eine lichtundurchléssige kreisféormige Scheibe im
Abstand rg vor dem Punkt P. Der Durchmesser D der Scheibe sei gerade so grofl wie
die 1. Fresnel’sche Zone, sodass das Licht von der 1. Fresnel’schen Zone ausgeblendet
wird. Wenn wir also E7 = 0 in (90) berticksichtigen, erhalten wir

1
E(P) =0+ (0 |Bo| + 31Bs|) + (31Bal — |Bal + §|Bs) + -+ + 51 El .

~0 ~0

Mit |Ey| = |E2| ~ |E3|, unter Vernachléssigung von |Exy| und unter Beachtung, dass
geméf (88) Fsy negativ und Fj positiv ist, resultiert daraus schlieffllich

E(P) ~ —|Es| + 5| B3| + (%\E3| — |Ey| + %!Ed) +--40=—-E+3E,
~0
1
E(P) ~ =5 B

Obwohl das Licht der 1. Fresnel’schen Zone durch eine Scheibe ausgeblendet wird, ist
die Lichtintensitit in P genauso grofl wie ohne Scheibe.

3. Fresnel’sche Zonenplatte

Werden die zu einer bestimmten ,Bildweite* ry und fiir eine bestimmte Wellenldnge
A ermittelten geraden oder ungeraden Fresnel’schen Zonen (Kreisringe) auf einer
Glasplatte vollstdndig oder teilweise lichtundurchlédssig gemacht und treffen dann
nidherungsweise ebene Wellen (z. B. Sonnenlicht) auf diese Platte, so kommt es dahinter
im Punkt P zu einer Intensitatsverstarkung des Lichts. Diese Fresnel’sche Zonenplatte
wirkt also dhnlich wie eine Sammellinse. Ursache fiir die Verstarkung ist die konstruktive
Interferenz der hindurchgelassenen und in P gleichphasig ankommenden Wellenanteile
bei gleichzeitiger Verhinderung der destruktiven Interferenz durch die gegenphasigen
Anteile (mit entgegengesetztem Vorzeichen von F).

®Beispielsweise betrigt der Radius g; der 1. Fresnel’schen Zone fiir ro = 20 cm und griines Licht mit der
Wellenldnge A = 500nm = 5,0- 10" m

o rP—1 = gm%\/(ro+m~%)2—r8 = o~ 4/(ro+3)?—r] ~ 0,32mm.
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Wenn der Durchmesser D der kreisférmigen Blende, die wie oben beschrieben im Abstand rg
von P positioniert ist, wesentlich gréfler ist als der Durchmesser der
1. Fresnel’sche Zone, also

D > 201 =2+y/1g X,

tragen viele Fresnel’sche Zonen zum Feld im Punkt P bei und wir sprechen von Fresnel-
Beugung.

Wenn aber rg so grofl wird, dass der Durchmesser D der Blende gleich grof3 oder kleiner
ist als der Durchmesser der 1. Fresnel’schen Zone, also

D < 201 = 2/rg\,

tragt nur die 1. Fresnel’sche Zone zum Feld im Punkt P bei und wir sprechen von Fraunhofer-
Beugung.
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12 Zur (skalaren) Fresnel-Kirchhoff’schen Beugungstheorie

Wir stiitzen uns in diesem Kapitel auf die leicht ,lesbaren“ Abhandlungen in:

Joos, Lehrbuch der Theoretischen Physik, Aula-Verlag Wiesbaden, 15. Auflage, 1989, Drittes Buch, Elftes
Kapitel Flektromagnetische Wellen. IV. Teil. Der Einfluf§ der Begrenzung (Theorie der Beugung), Seite 363
bis Seite 368 und

FEugene Hecht, Optik, Oldenbourg-Verlag, Miinchen, Wien, 4. Auflage, 2002, Abschnitt 10.4 Die skalare
Beugungstheorie von Kirchhoff, Seite 819 bis Seite 824.

Ziel dieses Kapitels ist die Herleitung des Fresnel-Kirchhoff’schen Beugungsintegrals iiber das
2. Green’sche Theorem aus den Maxwell’schen Gleichungen, den grundlegenden Gleichungen
der Elektrodynamik. Achtung! Aus praktischen Erwigungen verwenden wir in diesem
Kapitel eine ander Notation als im Abschnitt 11.3 Fresnel’sche Zonen.

12.1 Vorbereitung — Helmholtz-Gleichung

Mit dem .
. B 0A - .
Potentialansatz E = —grad® — 5 B =rotA (93)
und der 1 90
Lorenz-Eichung div A + - A E)
cz, Ot

liefern die Maxwell’schen Gleichungen die skalare inhomogene Wellengleichung

(Quellenterm % o, Dichte freier Ladungen bzw. elektrische Ladungsdichte Q)
und die vektorielle inhomogene Wellengleichung

1 0% . - -

(Quellenterm I j , elektrische Stromdichte ; )

Die Lichtgeschwindigkeit in einem Medium ist ¢,,. Die Quellenterme verschwinden in einem
Bereich ohne freie elektrische Ladungen und ohne elektrische Strome — z.B. in einem
Dielektrikum. Betrachten wir das elektromagnetische Wechselfeld auflerdem in einem Bereich
ohne Materie, d. h. im Vakuum, so miissen wir statt c,, die Vakuumlichtgeschwindigkeit
¢ verwenden und erhalten die (quellenfreien) homogenen Wellengleichungen

1 02
AP — — & = 4
S 1 9% o S
NA—-———A=0.
c2 Ot? 0 (95)

Dabei handelt es sich um lineare partielle Differentialgleichungen 2. Ordnung mit konstanten
Koeffizienten. Warum und in welcher Weise es sich zudem um Wellengleichungen handelt,
wird sehr ausfiihrlich beschrieben von Rainer J. Jellito!.

'Rainer J. Jellito, Studientext — Elektrodynamik, Theoretische Physik, 3. Auflage, Aula-Verlag, Wiesbaden,
1994, Abschnitt 5.2 Die Wellengleichung, Seite 119 bis Seite 130.
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Wir zeigen dies an drei Beispielen. Zunéchst setzen wir in (94) fiir @ die ,verallgemeinerte* Wellenfunktion
F(z,t)=a- f(z —vt)

mit der Ausbreitungsgeschwindigkeit v ein:

Loforsto] = & o s
1

= a-f'x—vt)-(—v)* = a-f'(@—ot). O

1
= a-f(x—ot) 2

Jetzt setzen wir in (94) fir @ die Kugelwellenfunktion

1
E(rt) = . sin(kr — wt) (96)
mit w = ck und der Ausbreitungsgeschwindigkeit ¢ = ¢ ein. Allerdings miissen wir dabei den Laplace-Operator
in Kugelkoordinaten
1 9 [,0
&—ﬁapa]

verwenden:

1 020 (1 | 107 (1
2 {r B (; - sin(kr —wt))} = 29z (; - sin(kr —wt))

K 1 w?
= - sin(kr — wt) = = (—7 sin(kr — wt))

k’2
= sin(kr —wt) . O

Schliefflich setzen wir die Funktion L
E(7,t) = —iwAy e *™ 1) |
die wir weiter unten herleiten und benétigen werden, in die vektorielle Wellengleichung (95) ein und finden
mit
w:c-‘k| = W=k

dass auch diese Funktion die Wellengleichung erfiillt und somit eine Wellenfunktion ist:
o (RA— 1 o (R o (R
ikQU}AO el(k:r wt) _ 72“)2 iw A() el(k’l‘ wt) _ ik2wA() el(k’!‘ wt) O
c

Von den Potentialgleichungen (94) und (95) zuriick zum E-Feld kommen wir, indem wir zunéchst den
Potentialansatz (93) in die homogene (quellenfreie) Maxwell’sche Gleichung
Y
tE+ —-B =0
ro + ot
einsetzen: .
= 0A

I N . o - -
E+ —rotA = E —A = E=——.
rot E + 5 rot rot E + rot 5 0 < 5 (97)

Setzen wir jetzt fir A die Wellenfunktion fi(F, t) = A, Ql(kF—wt) an, wobei die Amplitude Ay nicht von ¢
abhéngt, resultiert aus (97)

B(F,t) = —iwdy ¢ ®™w0 — B eiFr—wn)
— B

ebenfalls eine Wellenfunktion, wie wir oben bereits gezeigt hatten.
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In der Optik sind vor allem das E—Feld, d. h. das optische Feld und folglich die skalare
homogene Wellengleichung (94) von Bedeutung, weil bei Abwesenheit zeitlich-verdnderlicher
Magnetfelder geméafl des Potentialansatzes (93) allein

E=—grad® +— @:—/E-df

gilt. Setzen wir dies in (94) ein, resultiert

o 1 92 o o 1 9% 5
=P =

— ——
2
- A E, 15 F,
=, =, 2
AE(Ft) = E@E(r,t) baw. | AE, | = | 4 25 E,
2
AE, C%%Ez

Wie das skalare Potential @ so erfiillt also auch das aus @ hervorgehende elektrische Feld E
die Wellengleichung (94).

In der skalaren Beugungstheorie von Kirchhoff sind vereinfachend nur monochromatische
Wellen mit w = ¢ |E] = const von Interesse. Aulerdem beschrankt sich diese Theorie auf

ebene Wellen oder Kugelwellen. Ebene Wellen E(7,t) = Ej el(k—wt) hidngen nur in einer
Richtung vom Ort ab, ndmlich in ihrer Ausbreitungsrichtung, der Richtung des Wellenvektors

k. Kugelwellen E(r, t) = % elkr=wt) ier praktischerweise dargestellt in Kugelkoordinaten,
16sen fiir r # 0 ebenfalls die Wellengleichung (94). Im Punkt r = 0 liefern sie jedoch mit der
Wellengleichung die Beziehung

= — 4w or,

(AT N k2) e:l:i(kr—wt) _ < w?) e:l:i(k’r‘—wt)

Dt

r r

4 Wichtig ist nun fiir uns, zu sehen, dafl die von uns untersuchten ebenen Wellen
auch die Maxwellschen Gleichungen selbst 16sen, sofern die Quellterme o und 5
identisch verschwinden. Das zeigt uns néamlich die Ezistenz elektromagnetischer
Wellen, welche sich, einmal angeregt, im Vakuum ungeddmpft fortpflanzen. ...

Da die Maxwellschen Gleichungen linear sind, werden der Real- und der Imaginér-
teil komplexer Losungen in ihnen nicht gemischt. Finden wir also, dass bereits die
komplexzen Wellen Losungen dieser Gleichungen sind, so kénnen wir ... durch-
gingig mit ihnen rechnen und den Ubergang zum Realteil erst am Endergebnis
vollziechen. Dieses Verfahren erleichtert unsere Untersuchungen betrichtlich.“?

Verwenden wir also an Stelle des Potentials ¢ in der skalaren Wellengleichung (94) als
Losungsfunktion die Funktion des E-Feldes einer monochromatischen elektromagnetischen
Welle, z. B. die Kugelwellenfunktion (96)

E(’F, t) = lei(kr—wt) — leikr Ceiwt
r r

Dann kénnen wir (94) mit dem Produktansatz nach den Koordinaten r und t in zwei
gewohnliche Differentialgleichungen separieren, die voneinander unabhéngig und jeweils nur

2Zitiert aus: Rainer J. Jellito, Studientext — Elektrodynamik, Theoretische Physik, 3. Auflage, Aula-Verlag,
Wiesbaden, 1994, Seite 131.
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von einer Variablen abhéngig sind:

Ortsanteil £(r) = L el*r

Produktansatz : FE(r,t) = E(r)-T(t) = .
Zeitanteil T'(t) = e !

Setzen wir also den Produktansatz in die Wellengleichung (94) ein:

2
A E(F) - T(t) — ;Clif)-g(r) _ 0.

Mittels Division dieser Gleichung durch &(r) - T'(t) erfolgt dann die Separation:

ATE(T‘) _ 1 @ = const = k.

Er) AT

k ist die Separationskonstante. Uns interessiert im Folgenden nur die daraus resultierende
ortsabhéngige gewohnliche lineare homogene Differentialgleichung 2. Ordnung

N E(r)—k-E(r) = 0. (98)

Mit der Losungsfunktion £(r) = 2 ¢/ in (98) bestimmen wir die Separationskonstante
beziiglich unserer Kugelwellenfunktion. Wir erhalten als Ergebnis

und damit schliefllich die

Helmholtz-Gleichung A&+ k%€ = 0
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12.2 Die Kirchhoff’sche Formel

Die Fresnel-Kirchhoffsche Beugungstheorie ist eine skalare Theorie, weil nur eine der beiden
zur Wellennormalen k/k senkrechten Komponenten von

— —

E(’I_",t) _ E_'O (,,—,») _ei(E-F—wt) _ EO (,,—:) _ei(kr—wt) _ S(F) o lwt
betrachtet wird. Wenn also das E-Feld beispielsweise genau in z-Richtung propagiert, be-

trachten wir die F;- oder die Ey-Komponente. Fiir die im Folgenden betrachtete Komponente
schreiben wir mit der Amplitude Ey und dem Phasenwinkel ¢ = kr — wt kurz

E(7,t) = Eo(7) - =% bzw. im Fall einer Kugelwelle E(r,t) = Eo(r) - el*r=«1)

Und weil uns im Folgenden nur der ortsabhéngige Anteil £ der monochromatischen Ku-
gelwellenfunktion E(rg,t) interessiert, machen wir hinsichtlich der Zeitabhangigkeit den
Ansatz

. . p
E(ro,t) = &(ro)-e™" mit w=|k|-c=k-c=const und k:;.

Die Funktion & (ro) 16st die bereits gezeigte Helmholtz-Gleichung
AEHKE =0 & A€ = —KE.

Angenommen wir haben aufler der Funktion £ eine weitere Funktion ¥, die ebenfalls die
Wellengleichung und damit die Helmholtz-Gleichung erfiillt. Unter Beriicksichtigung der
Helmholtz-Gleichung ergibt dann das 2. Green’sche Theorem mit diesen beiden Funktionen
bei der Integration iiber ein beliebiges Raumgebiet und dortiger Stetigkeit der Integranden

%(SgradW—WgradE)-dS = /(EAW—QAS)dV
S \%

= /{5(— K0) — (- k:%‘)} dv (99)
= /k2 (W€ —€Ew)dV = 0.

—_———
=0

Als Funktion ¥ wéihlen wir den Ortsanteil der vom Punkt P des Integrationsgebiets ausge-
henden Kugelwelle (siehe Abbildung 22)

Weil die Kugelwellenfunktion und auch ihr Ortsanteil in P eine Unendlichkeitsstelle
bzw. eine Singularitdt besitzen, konnen wir nicht ohne weiteres iiber das gesamte In-
tegrationsgebiet integrieren. Zumindest ist die Beziehung (99) nur dann mit Sicherheit
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e"o \

Integrationsgebiet

Kugeloberflache

/

Abb. 22  Zur Herleitung der Kirchhoff'schen Formel. Das Integrationsgebiet, das von der geschlossenen
Flache S umhillt wird, ist von beliebiger Gestalt! Weil wir hier die freie Wellenausbreitung ohne
irgendwelche Hindernisse betrachten, ist die Hille S allein mathematischer Natur, also nur gedacht und
nicht , materiell”. Der Abstand 7y wird von O aus und der Abstand 7 wird von P aus gemessen. 730 ist der
Einheitsnormalenvektor auf S. Weiterhin gilt ¥ = ¥(r) und £ = E(rg) mit

PO =7und PO=7" = ry=|rF—7|.

gleich Null, wenn die Singularitdt nicht zum Integrationsgebiet gehort. Die Idee zur Losung
dieses Problems ist folgende Vorgehensweise:

1. Wir schlielen die Singularitét aus dem Integrationsgebiet aus, indem wir P als Mittel-
punkt fiir eine kleine Kugel innerhalb des Integrationsgebiets wéhlen.

2. Das Integral {iber die gesamte Oberflache des Integrationsgebiets setzt sich dann zusam-
men aus dem Integral iiber die Auflenfliche S und dem Integral iiber die Innenfliche
bzw. die Kugeloberfliche und ist geméafl (99) aber immer noch gleich Null.

3. Schliefflich lassen wir den Radius r der kleinen Kugel gegen Null gehen, d. h. wir lassen
die Kugel auf den Punkt P schrumpfen und schauen, welchen Beitrag P zum Integral
leisten kann. Wenn iiberhaupt, kann ein Beitrag zum Integral nur aus dem Punkt P
stammen, weil das Integral (99) unter Ausschluss von P stets verschwindet. Anders
gesagt, der Grenzwert des Oberflachenintegrals der kleinen Kugel fiir r — 0 liefert uns
den Wert des Volumenintegrals iiber das gesamte Integrationsgebiet einschliefSlich des
Punktes P in symbolischer Schreibweise wie folgt:

y{...d5+ f...dszo o y{...dgz_jf...ds —
5 5

Kugel Kugel

lim %---dS: lim —f---dS. (100)

Kugelradius—0 Kugelradius—0
S Kugel

= ¢---dS einschlieflich P
S

Wenn das vektorielle Flichenelement dS der duBeren Oberfliche S nach aufien zeigt, muss
das der Kugeloberfliche im Innern radial nach innen zum Punkt P zeigen, damit wir die
beiden Flichenteilintegrale wie folgt addieren kénnen:?

eikr eikr . eik’r eik’r .
7{(5 grad gradé’) -dS + 7!(5 grad grad5> -dS = 0. (101)
S

T T r r
Kugel

3Um das einzusehen, kann man einen Schnitt derart durch das gesamte Integrationsgebiet (es handelt sich
hier um einen doppelt zusammenhéingenden Bereich) legen, dass der Schnitt auch die Kugel zweiteilt. Setzt
man dann die Hiillenintegrale beider Teile zusammen, heben sich die Schnittflichenintegrale gegenseitig auf.
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Berechnung des Grenzwertes des Integrals iiber die kleine Kugel fiir » — 0:

eikr eikr .
j(I{ (5 grad — grad 8) -dS (102)
r r
Kugel
o Wir rechnen in Kugelkoordinaten, d. h. der Einheitsnormalenvektor €, zeigt ausgehend
vom Kugelmittelpunkt nach auflen. Folglich gilt fiir das nach innen zeigende vektorielle
Kugelfldchenelement

—

dS = —&,-dS = —€&,-r’sind dddy .

e Die Funktion £ und der Gradient von £ seien im gesamten Integrationsgebiet stetig,
weshalb £ im Punkt P den endlichen Wert &£, annimmt.

« Wegen der Stetigkeit von £ und weil d.S fiir r — 0 mit 72 abnimmt, im Nenner von
¥ = e*" /r das r aber nur in der ersten Potenz steht, verschwindet der Subtrahend im
Integranden von (102) fiir » — 0 gemés

j{ — (eﬁ-gradé') ce*T L sin® do de .

Kugel =0 fur lim,_0

o Mit

grad¥ = grad S <1 _ ) k. g,

r roor?
verbleibt von (102) nur das Integral

e L S W1 P 2\ 2

£ - grad -dS = £ - —— e -er-(—er)"r sin ¢ d9 dy
T roor

Kugel Kugel

= 7{ £+ (1 —ikr) e -sind dv dy
Kugel

mit dem Grenzwert

lim %S-(l—ikr)eikr-sinﬁdﬁdgo = & %sinﬁdﬁdgp = & -4m.

r—0 =
£=¢p Kugel Kugel

Das Hiillenintegral (101) tiber die geschlossene Oberfliche S des gesamten Integrationsgebiets
einschliefSlich der Singularitdt im Punkt P ist mit (100)

eikr eikr .
%(5 grad grad 5) -dS = - &, -4m. (103)

r r

Durch Aquivalenzumformung (Achtung Vorzeichen!) folgt daraus schliellich die

1 ikr ikr .
Kirchhoff’sche Formel &, = — <e grad & — Egrade )-dS (104)

4 r T
S

zur Berechnung des Ortsanteils £ des E-Feldes im Punkt P, wenn die Funktionen &£(rg) und
¥ (r) auf der geschlossenen Oberflidche des Integrationsgebiets bekannt sind. Die Kirchhoff’sche
Formel wird auch Kirchhoff’sche allgemeine Beugungsformel genannt.
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12.3 Herleitung des Fresnel-Kirchhoff’schen Beugungsintegrals

Zur Herleitung des Fresnel-Kirchhoff’schen Beugungsintegrals wenden wir die im Abschnitt
12.2 hergeleitete Kirchhoff’scher Formel (104) auf den Fall an, dass sich im Punkt O die
primére Lichtquelle befindet, welche die Kugelwelle

eikro

E =

7o

mit der gleichen Wellenzahl & wie in ¥ emittiert (siche Abbildung 23).

Abb. 23 Zur Herleitung des Fresnel-Kirchhoff’'schen Beugungsin- I ™S
tegrals. Vereinfachend ist der lichtundurchlassige Schirm hier eben \
dargestellt. Schirm und Offnung im Schirm diirfen aber beliebig ge- opaker | b
formt sein. Wahrend mit Abbildung 22 die freie Wellenausbreitung Sehirm \
betrachtet wird, dort die Hiille S des Integrationsgebiets also nicht )
.materiell“ sondern nur gedacht ist, soll hier der Schirm bis auf die |77 ’j
Offnung ,materiell” sein. Die Halbsphire spielt bei diesen Uberlegun- /

r
gen keine Rolle, weil sie im Unendlichen liegt und keinen Beitrag zum /\ ;
Flachenintegral leistet O !

(siehe Abschnitt 12.5 Zur auslaufenden Welle im Unendlichen).

Weiterhin sind fiir die Herleitung noch einige Annahmen und Néaherungen erforderlich:

o Die geschlossene Auflenfliche (Integrationsfliche) S, die das Integrationsgebiet mit
dem Punkt P umhiillt, setze sich zusammen beispielsweise aus einer Halbsphére mit
unendlichem Radius und ihrer Basisfliche, die nicht eben sein muss. Die folglich
ebenfalls bis ins Unendliche ausgedehnte Basisfliche sei ein opaker Schirm mit einer
lichtdurchlissigen Offnung beliebiger Gestalt.

« O befinde sich im Abstand 7o vor und P in endlichem Abstand 7 hinter dieser Offnung.
e Der lichtundurchlassige Schirm liefert keinen Beitrag zum Integral, was intuitiv klar ist.

e Und auch die im Unendlichen liegende Halbsphére von S soll keinen Beitrag zum
Integral leisten (siche Abschnitt 12.5 Zur auslaufenden Welle im Unendlichen).

o Weiterhin nehmen wir an, dass innerhalb der Offnung die Feldausbreitung ungestort

sei, d. h., die Stérung infolge der Feldbegrenzung durch den opaken Schirm soll nicht
beriicksichtigt werden.

o Innerhalb der Offnung gelte also fiir die einfallende Welle

eik"l‘o

g:

mit grad€& ,
o

wobei

ro €y, der von O zu einem Punkt @

in der Offnung gezogene Radiusvektor und

r &, der von P zu einem Punkt ()

in der Offnung gezogene Radiusvektor ist.
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Achtung! Wihrend bei der Herleitung der Kirchhoff’schen Formel die Integrationsfliche
die (geschlossene) Hiille S war, beschrankt sich jetzt die Integrationsflache nur noch auf die
Fliche der Offnung im Schirm.

Der Einheitsnormalenvektor auf der Offnungsebene sei 7°. Er zeige wie in Abbildung 22 vom
Integrationsgebiet ausgehend nach auflen. Die folgenden Terme

ikr : ikr
e'fro ik 1 . . i 1 elfro
&= = gradé= [(—e"— et =(ik-— " €rg
T 0 L To To
ikr i ikr
e' ik . 1 . . . 1\ e .
U = = gradV¥ = —elkr——ZeIkT - e, =ik - = €,
r r r r) r
€,-dS = &€,-n°dS = cos(7i’,&,)dS,
é.-dS = €.-1’dS = cos (fio, €-)ds .

sind also in (104) einzusetzen. Dabei miissen wir beachten, dass das Flachenintegral nur iiber
die Offnung lauft:

1 ikr 1 ikrg ikro 1 ikr
& = — / [e (ik—)e &, — ° <ik—>e -a]-ﬁods

To To To r T
Offnung
1 ik(r+ro) 1 1
= I / er-iro (ikz - 7“0> cos (fio,é}o) — (ik — 74> cos (ﬁo,é}) ds .
Offnung

Als weitere Naherung vernachléssigen wir in den runden Klammern die Quotienten 1/
und 1/r gegeniiber ik =127 /X, weil in der Praxis die Abstande zwischen Lichtquelle O bzw.
Beobachtungspunkt P und der Offnung sehr gro sind im Vergleich zur Wellenlinge \ :

1 2 1 2
ro > A und > A — —<<—7T:k: und f<<—7T:k7.
0 A r A

AuBerdem kénnen wir dann ik = i27 /A vor das Integral ziehen:

r-ro

i e'k(rJrro) 0 - 0
& = 2 _ cos(n ,ero) — cos(n ,er) ds .

Offnung

Ein Vergleich mit Abbildung 22 zeigt, dass <(i", €,,) ein stumpfer Winkel ist und < (7", €)
ein spitzer Winkel. Somit gilt:

cos (ﬁo,é}o) <0, cos (fio,é}) > 0.

Wir vertauschen deshalb die Kosinusse in der eckigen Klammer und ziehen das dabei resultie-
rende Minuszeichen vor das Integral. Dann ziehen wir den Faktor 1/2 in die eckige Klammer

und erhalten
g, - —i / eik(r+ro) [cos (nY,€,) — cos (7’ €,) s

2
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Wie wir sehen, besitzt die rechte Seite dieser Gleichung nicht die Dimension (Mafleinheit)
der elektrischen Feldstirke £. Wir fithren deshalb den Faktor ¢y ein, welcher der Feldstéarke-
amplitude der Punktquelle in O entspricht und nicht mit der elektrischen Feldkonstante ¢
verwechselt werden darf. Damit haben wir das

Fresnel-Kirchhoff’sche Beugungsintegral hergeleitet:

g, - —ieg / elk(r+ro) [cos (fio,é}) — cos (fio, é}o)] as | (105)

A T 2
Offnung

Geméfl Abbildung 22 und Abbildung 24 ist der Term in eckigen Klammern der im folgenden
Abschnitt 12.4 diskutierte Neigungsfaktor K :

cos (ﬁo, é’r) =cos®¥ und — cos (ﬁo, é}o) =costy =
]. S0 = S50 = ].
K = 5[ cos (i,€)) = cos (", &,)| = 5 (cos v+ cos )
] 1 . Primarwellen- Primarwellen-
Abb. 24 Neigungsfaktor K = 5(cosvg + cos?) im einfallslot ausfallslot

Fall einer Aperturblende bzw. einer Offnung. | Qi |

Offnunésebene
(Blendenebene)

Wenn 7 und ro grof sind gegen die Ausdehnung der Offnung, so kénnen wir in (105) sowohl
r und ro im Nenner als auch K als nahezu konstant iiber die Offnung betrachten und vor

das Integral ziehen:
Er) = ik(r+10) . 48 | 106
P(T) )\ T € ( )
Offnung

Weil der Faktor & = 27 /X im Exponenten grof ist, konnen wir dort r und ry nicht als konstant
annehmen und diirfen folglich die Exponentialfunktion e*("+70) nicht vor das Integral ziehen.

Wenn wir dann noch das Fresnel-Kirchhoff’sche Beugungsintegral (105) mit dem
Zeitanteil T'(t) = e7* kombinieren und zudem den konstanten ,Phasenfaktor® —i =e™! 3

berticksichtigen, resultiert das F-Feld im Beobachtungspunkt P :

K ; x
Ep(r,t) = &(r)-T(t) = %OT.TO / el [Krtro) —wt=31. 43 .
Offnung

Die aus dem konstanten ,Phasenfaktor® resultierende Phasenverschiebung des Feldes
im Beobachtungspunkt P um —7 gegentiber der einfallenden Primérwelle ergibt sich aus
der Storung der Wellenausbreitung durch die Apertur. Die Wellenausbreitung von den
Punkten @ auf der ,Aperturfliche® zum Punkt P wird ndmlich bestimmt durch die zeitliche
Anderung bzw. Ableitung der Feldstirke innerhalb der Apertur. Und da der Zeitanteil
der priméren monochromatischen Welle beschrieben wird durch e™“! | ist dessen zeitliche
Ableitung proportional zur Kreisfrequenz w = 27 und insbesondere proportional zu —i = % .
Eine zum Phénomen der Phasenverschiebung analoge Diskussion findet sich in E. Hecht,
Optik, 4. Auflage, Oldenbourg-Verlag, Miinchen, Wien, 2005, Abschnitt 4.2.8 Transmission

und Brechungsindex, Seite 160 bis Seite 164.
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12.4 Der Neigungsfaktor K

1
Allgemein ist der Neigungsfaktor K = 5 (cos Yo + cos 19) (siehe Abbildung 24).

Wir betrachten zunéchst den speziellen Fall der freien Ausbreitung einer Kugelwelle:

sekundare
Elementarwelle

Primarwelle

Abb. 25 Die freie Ausbreitung einer Kugelwelle und das Abstrahlungsverhalten der sekundaren
Elementarwellen. k ist der Wellenvektor der betrachteten primaren Kugelwellenfront.
Das Abstrahlungsverhalten der Sekundarwellen bei freier Ausbreitung der Priméarwelle wird beschrieben
durch den sog. Neigungsfaktor

K() =3(1+cosd) mit 0<K <1.
Der Feldstarkebeitrag der Sekundarwellen ist in Ausbreitungsrichtung der Primarwelle maximal entsprechend
K = 1. Der Feldstarkebeitrag der Sekundarwellen verschwindet entgegengesetzt zur Ausbreitungsrichtung
der Primarwelle entsprechend K = 0. Diese Theorie stimmt mit dem experimentellen Ergebnis tberein,
wonach die sekundéren Elementarwellen einer primaren Kugelwelle insgesamt keine zentripetalen sondern
nur zentrifugale Wellenfronten bilden.
(Abbildung nach: Eugene Hecht, Optik, 4. Auflage, Oldenbourg Verlag Miinchen Wien, 2005, Seite 781)

Bei freier Wellenausbreitung wie in Abbildung 25 gilt:

o Jg ist der Winkel g = 0 zwischen der Ausbreitungsrichtung der Primérwelle und dem
Primérwelleneinfallslot auf die Tangentialebene an den Punkt ) der Kugelwellenfront.

o 1) ist der Winkel zwischen der Ausbreitungsrichtung einer Sekundérwelle und dem Primér-
wellenausfallslot auf die Tangentialebene an den Punkt ) der Kugelwellenfront.

In der Realitdt bzw. allgemein erfolgt die Wellenausbreitung jedoch gestort, z. B. durch die
Begrenzung mittels einer Aperturblende wie in den Abbildungen 23 und 26 .
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Primarwellen-

Primarwellen-
Abb. 26 Neigungsfaktor K = 3(cosdg + cosd) im einfallslot ausfallslot

Fall einer Aperturblende bzw. einer Offnung. Qi ‘

Offnungsebene
(Blendenebene)

Im Fall einer Aperturblende in einem opaken Schirm geméafl Abbildung 26 gilt:

e Jg ist der Winkel zwischen der Ausbreitungsrichtung der Primérwelle und dem Primérwel-
leneinfallslot auf die Offnungsebene.

e 1) der Winkel zwischen der Ausbreitungsrichtung der Sekundérwelle und dem Primérwel-
lenausfallslot auf die Offnungsebene.

12.5 Zur auslaufenden Welle im Unendlichen

Wir diskutieren die Aussage:
FEine auslaufende Welle im Unendlichen leistet keinen Betrag zum Feldstédrkeintegral im
Beobachtungspunkt P.

e Argumentation mit dem Neigungsfaktor K :

Betrachten wir beziiglich Abbildung 25 eine Kugelwellenfront im Unendlichen, also
bei 7p = R — oo. Liegt dann (bei festen Punkten O und P) der Punkt @ auf dieser
Wellenfront im Unendlichen, so gilt

R—0o00 = v9—=17 = K—=0.
In diesem Fall wiirden also alle Sekundérwellen genau entgegengesetzt zu den zugehori-
gen Primérwellen bei P einlaufen. In Analogie zu Abbildung 25 gilt auch fiir die im
Unendlichen liegende Halbsphére in Abbildung 23

lim K=0 |,

R—o0

sodass auch dort die auslaufenden Wellen von der im Unendlichen liegenden Halbsphére
her keinen Beitrag zum Feldstarke-Fléachenintegral fiir den Punkt P leisten. Und weil
auflerdem der Schirm opak ist, braucht in dem von der Abbildung 23 beschriebenen
Modell das Flichenintegral schlieSlich nur iiber die Offnung im Schirm zu laufen.

116



e Argumentation mit der Sommerfeld’schen Strahlungsbedingung :
(Quelle: Joseph W. Goodman, Introduction to Fourier Optics, 2. Auflage, McGraw-Hill, USA, 1996,
Abschnitt 3.4 THE KIRCHHOFF FORMULATION OF DIFFRACTION BY A PLANAR SCREEN,
Seite 42 bis Seite 46.)

Wir gehen aus von der Kirchhoff’schen Formel (104)

1 ikr ikr .
E = (e gradE—Egrade )-dS,

4 T r
S

d.h. von der freien Wellenausbreitung geméafl der Abbildung 22 bzw. von der freien
Kugelwelle geméafl der Abbildung 25 mit den Kugelwellenfunktionen

ikr ikr ik 1 )
v o= ° = grad¥ = grad SE (1 — 2) . é,
r r roor

ikr ikr :

e!"ro e'fro ik 1 ; .

& = = gradf = grad = < — 2) elkro . €ry -
To 7o

Zur Vereinfachung nehmen wir jetzt an, dass die geschlossene Integrationsfliche S eine
Kugeloberfliche mit dem Radius r und dem nach aufien zeigenden Einheitsnormalen-
vektor 71° ist. Das zugehorige vektorielle Kugelflichenelement ist dann

dS =7-dS = 5’ - r?sinfdody = #’-r2de.

Hierbei ist df2 = sin § df d¢ das Raumwinkelelement, welches bei Integration iiber den
gesamten Raum den

T 27
vollen Raumwinkel (2ps = / / sinfdfdp = / df? = 4r
6=0 =0 R3

liefert. R? ist hier der Index fiir den gesamten (dreidimensionalen) Raum. Die Norma-
lenkomponenten der Gradienten von ¥ und £ sind

o ik 1Y ,
grad¥.n’ = = <l—> =AY

on roor2
o€ ik 1 ;
730 — 2 _ e ikro . 7 =0
grad£-71 o <r0 r%) e €ry M . (107)

Fiir die Argumentation mit der Sommerfeld’schen Strahlungsbedingung machen wir
jetzt die Naherungen

grad¥ = (1]{;—12>eikr-é} %ikelr.é'“
fiir grofle r = ror

— —()

e-n’ ~ 1.

Diese Néherungen setzen wir unter Berticksichtigung von (107) in die Kirchhoff’sche
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Formel (104) ein:

5p:7

7T

Q

:1

Q

1

4

1 ikr .
— < grad€ — Eik S ér>-dS
4 T

1

47

R3

Q

1 ikr
= ¢ < — 1/<;5> r?d$ ,
7

R3

1 o0&
R3

Das Feld auf der Oberfliche einer unendlich groflen Kugel leistet im Beobachtungs-
punkt P keinen Beitrag, wenn das Integral (108) verschwindet bzw. wenn fiir dessen
Integranden in isotroper Weise die

o€
Sommerfeld’sche Strahlungsbedingung lim < — ik 8) r =20
r—oo \ On

gilt. Diese Bedingung ist erfiillt, wenn £ mindestens so schnell verschwindet wie eine
Kugelwelle, was hier wegen

ikro ikro
E(To)ze = qe —  mit F':]@:const, 7| =7 <r
o |7 — 7|

der Fall ist. Diese Argumentation gilt analog auch im Abschnitt 12.3 fiir die im
Unendlichen liegende Halbsphére (siche Abbildung 23).

Wir héitten aber auch ganz einfach wie folgt argumentieren kénnen:

Wenn der Radius r der Kugelwellenfront gegen Unendlich geht, dann geht auch rg
gegen Unendlich. Daraus folgt

= ENA’ A&, TR = é&-i'=é,n'=1.

Fiir den Grenzfall r — oo diirfen wir also in der Kirchhoff’schen Formel (104)

r—-o00 = 1r9=1r und é}-ﬁozé}o-fioz

—_

(109)

setzen:

1 eikr eikr .
E, = — -ds
P 47r?{< r r )
S
1 ik 1Y efro fik 1Y\ 4, 0
- Sk e — - .e.|-n’ds
471'%[ r (To r%) ¢ €ro T0 r r2 ¢ er|mn

S




= mit (109) =

_ 1 e*r ik 1N 4, T ik 1Y .,
Tli)né.logpiﬂ [’r <T—T2>e — , <T—72>e dS—OD

S

=0

Im Grenzfall 1 — oo verschwinden Integrand und Integral, d. h., die im Unendlichen
liegende Wellenfront einer Kugelwelle liefert keinen Feldstérkebeitrag im Beobachtungs-
punkt P .
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12.6 Anhang: Fresnel- und Fraunhofer-Beugung

Hinweis!

Dieser Abschnitt, ebenfalls auf der Grundlage des Lehrbuchs der Theoretischen Physik von Joos, ist die direkte
Fortsetzung der vorausgegangenen Abschnitte und eher von theoretischer als von praktischer Bedeutung. Er
kann tibersprungen werden, weil wir den gleichen Inhalt praxisnah aufbereitet im Kapitel 13 nocheinmal

abhandeln.

Um es im Umgang mit dem Fresnel-Kirchhoff’schen Beugungsintegral in der Form (106)
bequemer zu haben, nehmen wir im Folgenden an, dass der opake Schirm mit seiner lichtdurch-
lissigen Offnung eben sei und in der (x,y)-Ebene eines kartesischen Koordinatensystems
liege. AuBerdem soll der Koordinatenursprung innerhalb der Offnungsebene liegen, sodass
die z-Achse so verlduft, wie in Abbildung 27 dargestellt.

y

A

Abb. 27 Zur Beugung in einer ebenen Schirméffnung beliebiger Gestalt. Nach

Joos, Lehrbuch der Theoretischen Physik, Aula-Verlag, Wiesbaden, 1989, 15. Auflage, Seite 367.

Dadurch besitzen die Punkte O, P und @ die Koordinaten
P::(x’y7 Z)7 Q::(S’n’0)7

sodass fiir die zugehorigen Abstédnde gilt

O = (1’0, Yo, ZO) 3

?”2:

2 _
ry =
R

Ry

120

($—§)2+(y—7’])2+2 )

2

(o — €)%+ (yo —m)* + 25 .

Und die Abstédnde zum Koordinatenursprung, den wir hier kurz mit 0 bezeichnen, sind

PO

00

Va2 +y2+ 22,

Vad+ vy + 23
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Damit ist dann

IE o L(Va2+y? | Vg +u
K = 5[608("07&)_Cos(no’em)} - 2( R - \/?'—50 0

und 7 und 79 im Nenner kénnen wir ebenfalls durch R und Ry ersetzen, sodass aus (106)

zunachst ) %
_ 1€ ik(r+ro)
E, = 0).dsS 111
P Y R- RO / € ( )

Offnung

wird. In der Exponentialfunktion unter dem Integral hangen r und ¢ geméafl (110) von &
und 7 ab. Wir werden deshalb in der folgenden Nebenrechnung r und rg bis zur 2. Ordnung
nach £ und n an der Stelle £ = 1 = 0 entwickeln und anschliefend diskutieren, was die sich
daraus ergebenden Nédherungen bedeuten.

Nebenrechnung: (Binomiale) Taylor-Entwicklung bzw. Binomialentwicklung von r + 7o = (£, 1) + ro(&, 1)
an der Stelle £ =n = 0 bis zur 2. Ordnung.

Es genitigt, nur r zu entwickeln, weil die Entwicklung von r¢ v6llig analog ist. Fiir £ = 1 = 0 schreiben wir
symbolisch (0, 0).

0. Ordnung
r0,0) =[-8+ (-0’ +2"]"| =(+y?+:") =R
(0,0)
1. Ordnung
0 0
J— s . _|_ _ s .
857‘(5 m) o0 3 anr(f n) o) U
R El R R BT CEO Y
(0,0)
t{gle-orro-wte] T aw-m- 0|
(0,0
_ —z&  —yn rE+yn
R + R R
2. Ordnung
1 (8% 9 *r 9%r 2
== . + 2 . + — .
2 (852 (0,0) ¢ 98.9m | 0,0 & 91 |0,0) ! >
1 0%r 5 9%r 1 0%r 2
- - . . + - .
2 9¢%| ) ¢ DEDN | .0, SR Ve 0o |
= {[(x—£)2+(y—n)2+zz}2 te-05[-0 +@-n+2] 2w -9 (_1)} %
(0,0)
+@-85[@-+u-n"+2] T 2w-m- (-1 e
(0,0
+{[(m£)2+(yn)2+z2]_2 F-ny -0+ w2 2 ) (1)} s
(0,0)
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11 2 9 Ty 1(1 > 2
—5{?@}'5 ‘ﬁf“i{a‘ﬁ}'"

_ 1849 1 (@& +yn)?
~ 2 R 2 R3 ’
Damit haben wir r + ro entwickelt:
2
zé+yn | 1&+n* 1 (x€+yn)
= R — il _
o R 2 R 2 R?
124+ 1 (wo€ + 2
LRy Tobtyon 1&g+t 1 (w0g 31/017) N

Ro 2 Ro 2 R}

Abschlielend reihen wir die Glieder entsprechend ihrer Ordnung aneinander:

r o =R 4 Ry — zl+yn  zof+yon

R Ro
R S /R O S /S (z€+yn)" 1 (w0&+yon)’ b
2 R 2 R 2 R3 2 R} ’

(112)

1 1 1 1 (@€ + yon)”
2 R 2 Ry 2 R3 2 R3

4+,

Im Folgenden schreiben wir (112) in einer kompakteren Form und benutzen das Gleichheitszeichen, obwohl
wir auf die Fortsetzungspunkte am Ende der Entwicklung bis zur 2. Ordnung verzichten:

r+r0 = R+ Ro + #(&n) (113)
mit
Qb(f,'l?) =
(2422 - (L4 2 +1£2+”2 +1€2+”2 S (@Etyn)’ 1 (wé+wen)”
R Ro R "R )" T2 R 2 Ry 2 R® 2 R '
1. Ordnung 2. Ordnung

Setzen wir die Entwicklung (113) einschliefilich der zweiten Ordnung in das bereits teilweise
gendherte Fresnel-Kirchhoffsche Beugungsintegral (111) ein, so erhalten wir das Integral fiir
die Fresnel-Beugung

—ig K ik(R+Ro) / ik ¢(&m)
A ) . 114
gp \ R e e ds ( )

Offnung

und sprechen von der Nahfeldndherung, mit der auch schon das Nahfeld bzw. das Fresnel-
Gebiet hinter der Offnung beschrieben werden kann.*

“Um das Gebiet unmittelbar hinter der Offnung erfassen zu kénnen, sind auch Entwicklungsglieder der
Ordnung > 2 erforderlich. Die Beschreibung dieses Gebiets kann recht miithsam sein.

122



Jetzt stellt sich die Frage, bis zu welchem Abstand R hinter der Offnung das Nahfeld reicht? Anders gefragt, bis
zu welchem maximalen endlichen Abstand Rmax hinter der Offnung sind die Entwicklungsglieder 2. Ordnung

bei gegebener Offnung relevant?
Wir erreichen das gesuchte Rmax, wenn die Exponentialterme 2. Ordnung ausgehend von R im Unendlichen

erstmalig gleich +1 werden, also bei

tinew +1 firn=0,24,...,
e =
-1 firn=1,3,5,....

Schauen wir uns den ersten der beiden in Frage kommenden Exponentialterme

) £2 402
eF s SR (115)

I

x 2
— ik g S (116)
an, so stellen wir fest, dass n =0 = n -7 = 0 nicht in Frage kommen kann, weil dann R gegen Unendlich
gehen miisste. Die (danach) nachstliegende Moglichkeit fiir ein maximales endliches Rist n=1 = n-wr ==
im Exponentialterm (115), also

2,2
k.l &+n
kg >R —

.
e =" = —1.

Mit dem Maximum?®
0 = max (\/52—1—772) = max (£2+7]2) = 5
der Offnung bedeutet das
100 2m
2R A
Es gilt also Faustregel®

(117)

=
3
)’

k

N | —
==
13
==
>
=
>|

Fresnel-Gebiet R <

>,

Schatzen wir abschlieBend noch den Exponenten von (116) fiir Rmax ab. Dazu vereinfachen wir 9, indem wir
den Fall n = 0 und y = 0 betrachten, sodass 9* = £2. Damit erhalten wir

2 2 2 A2 2
p.L@&tyn)®  m(@&tyn)” | maTo :sz)%.
2 R3 A R3 A R3 o4
Beriicksichtigen wir jetzt, dass unter den o.g. Voraussetzungen
A2 Ad
z = sin?d - Rmax = sin19~% = 22 = sin219~%

gilt, so ist der Exponent bei Rmax schliefflich

fur 9 =
m-sin? 9 = {0 1w 0,

m firdY =7 entsprechend z=Rund z=0.

Zumindest bei kleinen Winkeln 9 geht der Exponentialterm (116) gegen 1.

Die weitergehende Ndherung im Exponenten, d. h. wenn wir auf die quadratischen Glieder in
& und 7 verzichten und nur noch die konstanten und die linearen Glieder verwenden, ist die
Fernfeldndherung und ergibt die Fraunhofer-Beugung

—ie K ; _ik [(z 120 Y4 Y0
E = 5 0 R olk(R+Ro) / e k[(R+R0)£+(R+RO)n} -ds |, (118)
Offnung

55 ist der maximale ,Radius“ der Offnung, also eine feste GréBe, und darf nicht verwechselt werden mit der
Variablen g im Kapitel 14.

SMit der Apertur D findet man in der Literatur als Faustregel fiir das Nahfeld auch L < DTZ, wobei L = z
und z < R:

D = R<% = L[<R<1.Z2 = [<B QO

ol
N

A !
0=
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mit der sich nur noch das Fernfeld oder Fraunhofer-Gebiet beschreiben lédsst. Das Fernfeld
beginnt nach einem Ubergangsbereich etwa dort, wo der kleinere der beiden Abstinde R
und Ry um etwa eine GroSenordnung grofer wird als §2/\:

)
Fraunhofer-Gebiet min ({Ro, R}) > % , 0= max (\/ £+ 772>

Das Symbol > bedeutet ,,mindestens eine Gréf8enordnung gréfler als“. Und salopp ausgedriickt
gilt fiir die Fraunhofer-Beugung;:

Je kleiner die Offnung bei gegebener Wellenlinge bzw.
je grofer die Wellenléinge bei gegebener Offnung,
desto eher beginnt hinter der Offnung das Fraunhofer-Gebiet.
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13 Optische Abbildung in Fresnel- und Fraunhofer-Naherung

Im Folgenden verwenden wir die Konvention
> heifit: ,mindestens um 1 GroéBlenordnung bzw. um den Faktor 10 groflier als®.

Auch in diesem Kapitel werden wir die optische Feldstéarke in einem Beobachtungspunkt
P in Fresnel- und in Fraunhofer-Ndherung diskutieren. Wiahrend P im Abschnitt 12.6
aber als ein Punkt im radialen Abstand R vom Koordinatenursprung innerhalb der
Schirméffnung betrachtet wurde, definieren wir jetzt die Punkte P als Punkte in der
(z,y)-Beobachtungsebene. Diese liegt im Abstand z planparallel zur Schirmebene mit
der (ebenen) Offnung bzw. Apertur X (sieche Abbildung 28).
nA—~ A

1 5 y

—f

S : /f

||

S I

P

i z=0

- > opaker Schirm Beobachtungsebene

Abb. 28 Zur optischen Abbildung. Die Beobachtungsebene liegt im Abstand z planparallel zur Apertur
X7 im lichtundurchlassigen Schirm. X ist also u. a. definiert durch z = 0.

Auch wenn der Ansatz in diesem Kapitel zugunsten von mehr Praxisndhe etwas abgewandelt
wurde, so gehen wir trotzdem wieder aus vom Fresnel-Kirchhoff’schen Beugungsintegral (105)

g - —ieg / elk(r+ro) [cos (1%, €,) — cos (i, €,) €

A T 2
Offnung
Allerdings werden wir diese Formel im Folgenden deutlich vereinfachen. Und auch die
Fresnel- und die Fraunhofer-Néherung werden weitreichender ausfallen als im Abschnitt 12.6.
Fiir die optische Feldstérke &, schreiben wir E(z,y, z) und wir gehen davon aus, dass die
Feldstarkefunktion u = u(&,n) in der Apertur bekannt ist. Das heifit, wir ,verstecken® alle
Grofen, die sich auf die Quellenseite links vom Schirm beziehen, in der Funktion u(&,7n):

ethro — cos (11, €,,)

€0 — U(ﬁﬂ?) :

To 2
Fiir den verbleibenden abbildungsseitigen Anteil des Neigungsfaktors K schreiben wir gené-
hert

cos (1%, €,)

z
—  cost¥=—.
2 r
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Und weil das Fliachenintegral iiber die Apertur Y und somit iiber £ und n lauft, ist das
Fresnel-Kirchhoff’sche Beugungsintegral mit diesen ,,Anpassungen*

elkr

Beys) = o [[uten 2 agay
)

13.1 Fresnel-Niherung

Jetzt erfolgt eine wichtige Naherung, die Ndherung von r im Nenner:

%
N

z > laterale Abmessungen &, 1, x,y = X und 9 vergleichsweise klein =

%
—

Sl 3

Damit erhélt das Fresnel-Kirchhoff’sche Beugungsintegral fiir unsere Anwendung die einfache
Form

E(z,y,2) = i)\l‘ . //u(f,n) elFr(&m) dédn |. (119)
X

Im Exponenten von e*"(€7) durften wir 7 nicht einfach durch z ersetzen, weil die Wellenzahl &
allgemein groB ist im Vergleich zu r und deshalb kleine Anderungen von r grofie Verinderungen
des Exponenten bewirken:

2
k=5 mit Ax$10°m = k~100m!.

Wenn wir r ¢m Exzponenten durch z ndhern wollen, dann mit Hilfe der Taylorentwicklung.
Wir driicken also zunéchst r in den Koordinaten &, 7, x,y, z aus:

z

r= 2+ (E—2)2+(n-y)? = z\/1+<£_x>2+<n_y>2 = z-\/1+¢

mit

. <£—fv)2+ <n—y> -2ty (120)

Wegen

2
z > laterale Abmessungen von &,n,z,y = 0 < (gfx) +("7y)2 =qgx1

entwickeln wir
1
flg) = V1+q = (1+4q)?

fiir kleine ¢ bzw. an der Stelle ¢ = 0.

Nebenrechnung: Taylorentwicklung bis zur 2. Ordnung von f(q) = (1 + q)% an der Stelle ¢ = 0.

1

¢+ 5 f"(q

2
q=0 2 1 +

q=0

fla) = f(q)
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f(q):1+%qffq + -

Wir vernachldssigen im Folgenden die Entwicklungsglieder ab der 2. Ordnung und verwenden
folglich im Exponenten von ¢/*” die Niherung

1
Tﬁz[”ﬂ} = (121)
1 5—:1; 2 1 n—y 2 (f_l,)Q (n_y)Q
~ 1 — - (v J _
r +2(2>+2<z z + 5 + P
Das Fresnel-Kirchhoff’sche Beugungsintegral (119) ist damit
E(x,y,z) = N / fn Z+ (€~=)?/2z+ (n—y) /22’] d¢dn
und mit ik- L = i%F.L = T
' i [(e-2)2+ (n-v)?]
E<337y72) = D / §77 ) n—y) dfd?’]

Quadrieren der Binome im Exponenten, also
im

/\z[(é—w)Q + (n-y)?| = %[52—2590%62 + n® = 2ny + v
. Ly
= %(€2+n2) + %(w2+y2) — ;%:(x£+y77),

liefert schliefflich mit 27 / A=k

E(z,y, 2 E(E40%) + Z (@ +y?) — L (aEtyn) d¢dn

- 1)\z

und damit die Fresnel-Néiherung

ikz . in
Blay2) = 5 b // u(€ ) - e O L SE) qeqy | (122)
X

Zur Bedeutung der Terme! in (122):
ikz

e cx
o const Intensitatfaktor mit Phasenkonstante % =—i=e "2,
iz

eixlz(x2+92) = 9(337 Y, Z) Phasenfaktor ’

ex: (E4n%) = f(&,n,z) Chirp-Funktion, engl. to chirp — zwitschern, zirpen,
wird in der Fraunhofer-Ndherung vernachléssigt .

Verallgemeinert dargestellt ist die Chirp-Funktion f(z) = gimra?
Damit sind hier x = £ bzw. z =n und k = i Die Chirp-Funktion ist eine reine Phasenfunktion mit
konstantem Betrag |f(x)| = 1.
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Fourier-Darstellung von (122) mit

ikz ikz . ikz
T _ y _ e _¢€ I (@24y?) _ © imAz(u?4+v2) _
= =v -g9(x,y,2) = seArz = -e =
Az Mo Az 9(@,y,2) Az Az ¥l

WV, Z)

B(uv) = o2 [[ul€n) - s z) -0 dgay

= %’l/)(/% v, z) - ]-'{u({, n) - chirp(§, 77)}

E(p,v,z) = %w(u, v,z) F{u(ﬁ,n)} ®f{chirp(£7n)} :

13.2 Bedingung fiir die Fresnel-Ndherung

Mit (120) und (121) verwenden wir in der Fresnel-N&herung

kr%kz-[l—kiq} :kz.[1+;(£_x)2;(”_y>2] (123)

unter Vernachldssigung der Entwicklungsglieder ab der 2. Ordnung, d. h. unter der Bedingung

1 1 —x)? —)21%
I S -2+ =y L,
8 8 22

Ermitteln wir also die Werte von z, welche diese Bedingung erfiillen:

2 2
o 1€+ m—y?] o [€-2?+ oy
P2 = T 2 @

2
Fresnel-Bedingung 2 > i’/i\ [(5 —z)2+(n— Z/)Z}

Das Fresnel-Gebiet oder Nahfeld erstreckt sich folglich {iber den z-Bereich, der die Fresnel-
Bedingung erfiillt, und geht dann bei sehr groflen z iiber in das Fernfeld.

Beispiel: ((—2)=(n—y)=1cm=10"2m, A=500nm=5-10""m,

2
8/7-[(10-2)2+(10-2)2) 'md /T 0T :
_ 4. _ 3/T .3
z > \/ 4-5-100"m - 20-107m_ . V5o

z > 0,40m = 40cm .

13.3 Fraunhofer-Niherung

Ausgehend von der Fresnel-Naherung (122) vernachléssigen wir bei der Fraunhofer-Naherung
auch noch den beziiglich £ und n quadratischen Term im Exponenten, d. h. die Chirp-Funktion
exs (€1 wird gleich 1 gesetzt. So erhalten wir die

Fraunhofer-Ndherung

ikz . .
Bloyz) = S e800 [[ugn e feemagay | ()
by

iz
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Fourier-Darstellung von (124) mit

ikz ikz ikz
€ dim (22442 € imAz(p2+0v2
AZ . g(:c7y, Z) = 7)\2: . ekz( +y%) = 7)\2: -e (" +v%) = 1/)(

=V, ,LL,Z/,Z) :

- Y

/\Zilu’ Az
1 i27m v

E(/,L,l/,z) = Y'(/)(Iu,’ywz)//u(g’n),eQ (m&+vn) dfdn

Blsw,2) = 5 (av,2) Flul€n)}

13.4 Bedingung fiir die Fraunhofer-Nadherung

Ausgehend von (123), d. h. von kr in Fresnel-Naherung geméif

1 1 (-2’ +(n—y)
kr%kz'[1+2q] :kz-[l—}-Q 2 ,
2 _ 2 2 2
~ ks 1+1§ 28 +x* + n° —2ny +vy 7
2 22
2 2 2 2
kr o~ ke 4 kST pSEEny e

2z z 2z
~————

wird in Fraunhofer-Ndherung der beziiglich £ und 7 quadratische (unterklammerte) Term
vernachléssigt, d. h.
2, .2
RS/
2z
Ermitteln wir also die Werte von z, welche diese Bedingung erfiillen:

— 0.

| 2 2 2 2
1 RS T
2z A z

Fraunhofer-Bedingung 2z >> ;(52 —1-772)

Beispiel: ((—z)=(n—-y)=1lcm=10"2m, A=500nm=>5-10""m,

w (107224 (10722 m2 5 q0-4 2
z> 5107 m = 510 7m

z > 1,257-10°m = 1257m .

Wie man sieht, beginnt das Fraunhofer-Gebiet oder Fernfeld erst bei viel grofleren Abstdnden
z von der Apertur als das Nahfeld.
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14 Fraunhofer-Beugung und Auflosungsvermogen

Nach Eugene Hecht, Optik, Oldenbourg-Verlag, Miinchen, Wien, 4. Auflage, 2002, Abschnitt 10.2.5 Beugung
an einer kreisrunden Offnung und Abschnitt 10.2.6 Das Auflésungsvermégen abbildender Systeme, Seite 752
bis Seite 762.

Weil die optischen Linsen und folglich die Offnungen der meisten optischen Instrumente
kreisrund sind, werden wir in diesem Abschnitt das Auflésungsvermogen optischer Instrumente
mit kreisrunder Offnung berechnen. Grundlage unserer Uberlegungen ist neben der Abbildung
14, bei der man sich die Linse Ly in der Offnungsebene X positioniert vorstellen sollte,
insbesondere die folgende Abbildung 29:

nA——~ A
i y
—_—
., P
- ¢ /f
I R d
p
-, 0 7
a
., 7
> z=0
- > opaker Schirm Beobachtungsebene

Abb. 29 Zur Fraunhofer-Beugung an einer kreisrunden Offnung bzw. Apertur ¥ mit dem Durchmesser
D=2-a.

Eine ebene, monochromatische Welle treffe von links so auf die Offnung X, dass ihr
Wellenvektor k in Richtung der z-Achse verlduft.

,» Von der Lichtwelle, die auf X trifft, wird auf jeden Fall nur ein kreisférmiger
Ausschnitt verwendet — jener, der sich durch die Linse Lo ausbreitet —, um in
der Brennebene das Bild zu erzeugen. Nichts anderes passiert offensichtlich im
Auge, einem Teleskop, Mikroskop oder einer Kameraoptik. Das Bild einer fernen
Punktquelle, erzeugt mit einer ideal aberrationsfreien Sammellinse, ist daher nie
ein Punkt, sondern stets eine Art Beugungsbild. Da wir immer nur einen Teil der
auftreffenden Wellenfront verwenden, kénnen wir nicht erwarten, ein ideales Bild
zu erhalten. “!

Die Offnung sei gleichméiBig ausgeleuchtet, d. h., fiir die optische Feldstéirke in der Ebene X
gelte

u(§,m) = const .

1Zitiert aus Eugene Hecht, Optik, Oldenbourg-Verlag, Miinchen, Wien, 4. Auflage, 2002, Seite 752.
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Wir gehen aus von der im Abschnitt 12.6 hergeleiteten Formel (118)

g, = —1;0 RKRO oik(R+Ro) / ok (R e+ (5+12) 7] 4g
Offnung
B 1 eoeikRU elhR —ik[(i 70)5_‘_( 70)”]
S Th i /e TR i)l s (125)
Offnung

zur Beschreibung der Fraunhofer-Beugung, miissen diese aber an die hier vorliegenden
speziellen Verhéltnisse anpassen. Weil wir nur jene gebeugten Strahlen beriicksichtigen
wollen, die nur gering von der Richtung parallel zur z-Achse abweichen, kénnen wir K = 1
setzen. Bei einer ebenen einfallenden Welle gilt Ry — oo, sodass die Quotienten % und %%

im Exponenten unter dem Integral verschwinden. Der Term
OeikRo
Ry

im Vorfaktor beschreibt die Feldstéirke in der Offnung fiir den Fall einer Kugelwelle, die ihre
Punktquelle im endlichen Abstand Ry vor der Offnung besitzt. Da wir jetzt aber von einer
einfallenden ebenen Welle ausgehen, konnen wir diesen Term durch const = u ersetzen. Und
weil der Zeitanteil e 7! fiir unsere Betrachtungen nicht relevant ist, vernachlissigen wir ihn
im Folgenden wieder. Damit erhélt (125) die Form

1 ikR . > y
R R )
——

€q = const

Offnung

Aus Bequemlichkeit fassen wir die beiden konstanten Vorfaktoren & und u zu €4 zusammen,
sodass kurz

ikR .
E(z,y,z) = EA; / e iRk Extny) . 49

Offnung

resultiert. Weil die einfallende ebene Welle senkrecht auf die kreisrunde Offnung X trifft,
handelt es sich hier um ein axialsymmetrisches Problem (beziiglich der z-Achse). Es ist
deshalb sinnvoll, auf X' und der Beobachtungsebene o (ebene) Polarkoordinaten einzufithren:

Y: €&€=p-cosa, n=p-sina,
c: x=d-cosff, y=d-sinf,
= dédn = pdpda.
Mit dem Additionstheorem
cosa-cosf + sina-sinff = cos(a F )
ergibt das
Ex+ny = ocosa-dcosf+ psina-dsinf = od - cos(a — 3)

und damit schliefilich das Flichenintegral iiber die Offnung X in (ebenen) Polarkoordinaten:

ikR <
( ﬁ, . 6Ae / / 1fgd cos(a— )-ngda.

0=0a=
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FE ist aber wegen der Axialsymmetrie unabhéngig von 3, d. h., fiir jeden festen Radius d besitzt
FE unabhéngig von  stets den gleichen Wert und erzeugt somit in der Beobachtungsebene ein
um die z-Achse kreisformig angeordnetes Beugungsmuster. Wir kénnen deshalb vereinfachend
und 0.B.d.A. 8 = 0 setzen:

a 27
ikR ko
E(d”B:O,Z) — eAeR / /e—1de-cosa.ngda ) (126)
0=0a=0

Die Berechnung dieses Fliachenintegrals erfordert den Umgang mit der Bessel-Funktion. Wir
16sen es deshalb in der folgenden Nebenrechnung.

Bessel-Funktion

Die Integraldarstellung der Bessel-Funktion J erster Gattung und der Ordnung n (n ganzzahlig, d.h.
n € Z) ist

2m
1 i(n-a+w-cosa
Jn(w):%rd”/e( + ) da
0

mit dem Argument w und der Rekursionsformel

d
@[w . Jl(w)] = w - Jo(w),
d n _ n
@[w -Jn(w)] = w" Jo_1(w)
= w"Jp(w) = /wn~Jn_1(w) dw =
0
1 w .
Jn(w) = W/w -~ In—1(w) dw
0
. L[
Das heif3t Ji(w) = P /w - Jo(w) dw .
0
Weiterhin gilt
27
1 iw-cos a
Jo(w) = %/e da, Jo(0)=1,
0
27
1 i(a+w-cosa
Jl(w):%/e(+ ) dav J1(0)=0.
0

Nullstellen von Ji(w), also
wo = 0
, wy = 3,832
Ji(w) =0 bei ¢ 4, — 7016

Nebenrechnung: Losung des Fliachenintegrals (126)

kR )
E(d,ﬁ:o,z) = EAeR / /e_lki}%dAcosa'ngdO[.
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Wir verwenden die Substitution

kod R R
B =_ = do=—24d
R w o S P Y = 0 g 1Y
mit den daraus folgenden Integralgrenzen
0=0 = w=0 und p=a = wz—kiRd

und lassen den Vorfaktor des Fliachenintegrals zunéchst unberiicksichtigt. Der Winkelanteil des Integrals ist

damit
27T 2T 27
/ei(* kod/R)- cos o da = /eiw»cosa da = 27 (1/eiw»cosa da)
2m

0 0 0

= 27 Jo(w) .
Vom Fléchenintegral verbleibt folglich das Integral langs des Radius o:

a —kad/R
R R
/QW'Jo(w)'Q'dQ—QT(/ Jo(w)-<—ﬁw)-<—mdw)
0=0 w=0
2 —kad/R
= 27 (@) Jo(w) - w - dw
w=0
R\2 —kad/R
(e
Da Ji(w) eine ungerade Funktion ist, gilt
w=—"" .y (kad/R) = —Ji(kad/R) = (-1 (w)] _ kad s (kad/R)
R w=— kad/R R
sodass
[ R\? kad
/ 21 - Jo(w) - 0-dp = 2n (@> : % Ji(kad/R)

0=0

= 2ma” - % - Ji(kad/R) .
Mit dem Flacheninhalt

der Offnung ¥ ist dann das Flichenintegral insgesamt, also auch mit dem Vorfaktor,

a 27
ikR i ikR
eA; / /e_'kgd'cosa~gdgda = EA; -2-A-k];d-J1(kad/R). (127)
0=0 a=0

Zur besseren Ubersicht in den folgenden Rechnungen ordnen wir die Terme in (127) um und
schreiben fiir die Losung des Fléchenintegrals (126) schlieBlich

2en Ji(kad/R)

ikR | A.
¢ kad/R

E(d,z) =

Wegen der Achsensymmetrie des Beugungsmusters, das im Fall der kreisrunden Offnung auch
als Airy-Muster? bezeichnet wird, ist die Bestrahlungsstirke bzw. der zeitliche Mittelwert
der Intensitét in der Beobachtungsebene auf folgende Weise abhéngig vom Radius d:

62 2 a 2
0 - (), - - 5 [l

2Sir George Bidell Airy (1801-1892): kéniglich-englischer Astronom.
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(128)

— o2& A [Jy(kad/R)]?
Itd) = }4%2 [ kad/R }

Daraus und mit dem Ergebnis (130) aus der folgenden Nebenrechnung erhalten wir
die Bestrahlungsstéirke im Zentrum des Beugungsmusters, also fir d = 0 = w = 0,
wie folgt:

Nebenrechnung
JléO) = — nicht definiert = mit L’'Hospital :
d d
lim 7J1(w) = lim ddel(w = lim 4z Ji(w) R
w—0 w w—0 au; w—0 1
. Ji(w) o d
33107 = ilglO@Jl(w). (129)
—[w Jl(w)] = w-Jo(w) = w- — Ji(w) + Ji(w)
i J1(w)
= J()(’LU) dw Jl(w) + w
~ 1 — lim @ . Ji(w)
= Jo(0) =1 = 1})1:110@&(111) + 1}}13107
(129) . . d
1= 2~1£1310MJ1(11)) &
d 1
zlulino@”h(w) =3 (130)
Td=0) = T, = 24 A® Ji(kad/R)]? (30) 264 A% (1Y
0 R?  ds0| kad/R | R? 2) "
7. €4 A2
T 2R

Fiir einige praktische Anwendungen ist es niitzlich, wenn die Bestrahlungsstiarke des Beu-
gungsmusters als ,,Vielfaches“ von I und als Funktion des Winkels ¢ (siehe Abbildung 29)
angegeben wird. Dazu klammern wir I aus (128) aus und fiithren die Substitution

E =gsind

durch:

3 2 42 2 kad)1?
T(d) = & A® [Nlkad/R)]® _ 7,. 2‘Jl( ad) |
2 R? kad/R kad

2- Jl(kasinﬁ)}2

10) = Io- [ kasin v (131)

Das Airy-Muster zeichnet sich durch einen kreisrunden Bereich hoher Intensitidt um das
(zentrale) Hauptmaximum aus. Dieser Bereich ist die Airy-Scheibe und wird begrenzt durch
das erste Minimum im Airy-Muster.
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14.1 Bestimmung des Auflésungsvermogens bei kreisrunder Offnung

Eine allgemeine Ubersicht zur Thematik ,, Auflésungsvermogen® findet man im Internet unter:

Spektrum.de — Auflosungsvermogen — Lexikon der Optik

Die Begriffe Auflésungsvermogen und Auflésung werden synonym verwendet. Bei der Be-
stimmung des Auflosungsvermogens optischer Instrumente stiitzt man sich meistens auf das
Rayleigh-Kriterium? (1874):

Zwei Punktquellen werden dann gerade noch getrennt wahrgenommen (,aufge-
16st“), wenn das Hauptmaximum des Fraunhofer-Beugungsmusters der einen
Quelle und das erste Minimum des Fraunhofer-Beugungsmusters der anderen
Quelle zusammenfallen. Man spricht in diesem Zusammenhang folglich vom
Doppelpunktauflésungsvermogen.

Der sich daraus ergebende auflésbare Minimal- oder Mindestabstand der beiden Quellen
entspricht bei kreisrunder Apertur dem Abstand des ersten Minimums vom Zentrum des
Airy-Musters, also dem Radius der Airy-Scheibe. Es ist meistens sinnvoll, nicht mit dem
Abstand bzw. der Strecke zwischen den Quellen zu rechnen, sondern mit dem Winkel 6, unter
dem die beiden Punktquellen beobachtet werden.

Wir brauchen in unserem Fall folglich nur den zum ersten Minimum von (1)) gehérenden
Winkel ¢ zu berechnen. Dieses Minimum befindet sich dort, wo der Zdhler im Klammerterm
von (131) verschwindet bzw. wo Ji(kasind) = J;(w) seine erste Nullstelle hat. Und das ist
bei w1 = 3,832 der Fall:

Jl(k:asinﬁl) = Jl(wl) =0 <

1 A 2 A
wy = 3,832 = kasint; < sin191:3,382-—:3,382-—:3’38 . .
ka 21a T 2a

Mit dem Durchmesser D = 2a der kreisrunden Apertur und unter Berticksichtigung der
Tatsache, dass der Winkel 91 zwischen den Zentralstrahlen* zweier verschiedener Punktquellen
liegt und wir ihn deshalb mit 6.,;, bezeichnen, erhalten wir daraus schliellich

A
infpn = 1,22 =
Sin D

Ist der Abstand R (siehe Abbildung 29) bekannt, kann man den (gerade noch auflésbaren)
Mindestabstand d,;, in der Beobachtungsebene berechnen mit Hilfe von

i A
Sin Opin = % = 1,22-5 EN

RA
dpin = 1,22 =2 |, 132
D (132)

e sinf., ist die Winkelauflésungsgrenze.
o Onin ist der minimale Winkelabstand.

o duin ist der bildseitige (auflosbare) Mindestabstand.

3John William Strutt ,Lord Rayleigh (1842-1919): englischer Physiker und Nobelpreistrager.
4Als Zentralstrahl bezeichnen wir hier den Strahl von der Punktquelle zum (zentralen) Hauptmaximum des
Airy-Musters.
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Beispiel aus der Fotooptik

Das Objektiv sei auf die Beobachtungsebene bzw. Bildebene fokussiert. Bei einer Land-
schaftsaufnahme ist die Gegenstandsweite a sehr grofl bzw. geht gegen Unendlich, sodass
dann die Bildweite b nur vernachléssigbar gréfler ist als die Objektivbrennweite f. Unter
Beriicksichtigung von (132) kénnen wir also von R = b = f ausgehen und erhalten fiir den
bildseitigen (auflésbaren) Mindestabstand

A
din = 1,22 2.2
D

Im Fall von Nahaufnahmen ist die Bildweite deutlich gréfler als die Objektivbrennweite,
sodass wir dann b statt f verwenden miissten, um ein Ergebnis mit hinreichender Genauigkeit
zu erhalten.

Bei der Durchlichtmikroskopie ist die Gegenstandsweite sogar nur geringfiigig grofler als
die Objektivbrennweite und die Bildweite ist sehr viel grofler als die Objektivbrennweite.
Auflerdem interessiert uns in der Mikroskopie nicht der bildseitige sondern der objektseitige
Mindestabstand, d. h. der gerade noch auflésbare Abstand zwischen zwei Objektpunkten.
Weil also bei der Mikroskopie die Verhéltnisse teilweise umgekehrt sind, werden wir das
Auflosungsvermdogen des Mikroskops gesondert betrachten. Allgemein und vereinfacht gilt
die folgende Ubersichtsdarstellung, in der die bildseitigen Gréfien mit einem Strich indiziert
sind:

e Das Doppelpunktauflésungsvermégen entspricht dem bildseitigen Mindestabstand,
d. h. dem kleinsten erfassbaren ,Bildpunktabstand*

Ao
/
AYin = 'Y'm, 0,47 <~y <1,22.

e Das Auflésungsvermogen des Mikroskops entspricht dem objektseitigen Mindestab-
stand, d. h. dem kleinsten erfassbaren Objektpunktabstand

Aypin = v ———, 0,47<y<1,22.
Ao ist die Vakuumwellenlidnge, n - sin « ist die objektseitige und n’ - sin o’ die bildseitige

numerische Apertur NA. Der Faktor v = 0,47 resultiert aus dem Sparrow-Kriterium, auf
das wir nicht eingehen werden.
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15 Das laterale Auflosungsvermogen des Mikroskops

Quellen und Literaturhinweise

e Rudolf Gross, WMI — Lecture Notes — Kapitel 7, Abbildungstheorie,
https://www.wmi.badw.de/teaching/Lecturenotes/Physik3/Gross_Physik_III_Kap_7.pdf

e Friedrich-Schiller-Universitdat Jena, Physikalisches Grundpraktikum, 404 — Mikroskop,
www.uni-jena.de/pafmedia/Studium/Grundpraktikum/V_404.pdf

In der Mikroskopie ist der objektseitige Offnungswinkel woi, des Objektivs von grofier
Bedeutung (siehe Abbildung 34). Er ist wie folgt definiert:
woyp = 2 - arctan (D—/Q>

a

mit der Gegenstandsweite a und dem Objektivdurchmesser D. Und es gilt folglich:

halber Offnungswinkel a = % = arctan <DT/2> .

Fiir den (gerade noch auflésbaren) Mindestabstand zwischen zwei Objektpunkten oder zwei
benachbarten Gitterstrichen schreiben wir im Rahmen der Durchlichtmikroskopie einheitlich

Jmin-

15.1 Laterales Auflosungsvermogen des Mikroskops mit
Rayleigh-Kriterium

Nach Wolfgang Demtroder, Springer-Lehrbuch Experimentalphysik 2, Elektrizitat und Optik, 3. Auflage,
Springer-Verlag, Berlin, Heidelberg, New York, 2004, Abschnitt 11.3.8 Auflosungsvermdgen des Mikroskops,
Seite 353 und Seite 354.

Das Auflésungsvermégen mit dem Rayleigh-Kriterium ist ein sog. Doppelpunktauflésungsver-
mogen und bezieht sich auf selbstleuchtende Objekte wie z. B. bei der Fluoreszenzmikroskopie
und auf inkoh&rent durchleuchtete Objekte. Bei einzelnen inkohérenten Punktquellen sind
die Intensitdten der jeweiligen Beugungsmuster dieser Punktquellen zu addieren, um das
Bild zu erhalten:

1(0) = L(0)+ () = A3(0) + A3(6) .

Inkohérente Beleuchtung fithrt allgemein zu einer besseren Auflésung als kohérente Beleuch-
tung.

Der Abstand Objektebene—Objektiv ist die Gegenstandsweite @, der Abstand
Objektivoffnung — Zwischenbildebene die Bildweite b.

Airy-Scheibe von O,

——

Objektebene
Airy-Scheibe von O,

Zwischenbildebene

Abb. 30 Zum Auflésungsvermdgen des Mikroskops mit dem Rayleigh-Kriterium.

Von zwei beleuchteten Objektpunkten Op und O; (siche Abbildung 30) verlaufen die
,Zentralstrahlen“ mit dem Winkel # zueinander durch das Offnungszentrum des Objektivs
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zur Beobachtungs- bzw. Zwischenbildebene. Dort erzeugen sie nicht ihren (geometrischen)
Bildpunkt sondern jeweils ihr Airy-Scheibchen, sodass wir mit R = b die Formel (132) zur
Berechnung des bildseitigen (auflosbaren) Mindestabstands dyi, heranziehen kénnen:

b
dmin == 1;22'7- 133
- (133)

Diesem bildseitigen Mindestabstand dy,i, entspricht ein objektseitiger (gerade noch auflosba-
rer) Mindestabstand gmi, nach dem Strahlensatz wie folgt:
9min _ dmin

A A
—_— :1 22'* min = 1722. [ 14
a b ety Y ““D (134)

Weil allgemein in der Durchlichtmikroskopie die Objektebene praktisch in der vorderen
Brennebene des Objektivs liegt, setzen wir a = f und erhalten aus (134) schliefflich

A
min — 1722
g D

Definitionsgemaf ist damit das Auflosungsvermogen A des Mikroskops

A =

= 0,82 D
Gmin ’ f)\

Der Offnungswinkel 2a eines Objektivs wird manchmal angegeben mittels der Nidherung

2-sina 7
Allerdings ist diese Ndherung nur fiir Winkel « bis ca. 30° eine brauchbare Ndherung.
Fiir weiter anwachsende Winkel a wird diese Naherung sehr schnell unbrauchbar. Dessen
ungeachtet wird sie verwendet, um die Abhéngigkeit des Auflésungsvermoégens von der
numerischen Apertur NA = n - sin a des Objektivs darzustellen. Setzen wir diese Ndherung
némlich in (15.1) ein, so erhalten wir

A A
Gmin ~ 1,22 — 2 =122, — 0
2-sin«o 2-n-sina
Ao A0
in ~ 1- = 1-
Jmin 0,6 n - sin« 0,6 NA
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15.2 Laterales Auflosungsvermogen des Mikroskops mit Abbe-Kriterium

Das Abbe-Kriterium bezieht sich auf die Durchlichtmikroskopie mit kohirent beleuchteten
Objekten.

Bei kohérenten Quellen sind die Einzelamplituden zu addieren und die Amplitudensumme
anschlieend zu quadrieren. Es resultiert das Intensitdtsmuster als Bild:

10) = [410) + 42(0)]"

1873 beantwortete Ernst Abbe! die Frage, bis zu welcher kleinsten Gitterkonstante g, mit
einem Mikroskop die Abbildung eines Strichgitters moglich ist. Er fand dabei das nach ihm
benannte Kriterium fir das Auflésungsvermégen des Mikroskops, das Abbe-Kriterium:

Um eine mikroskopische Abbildung eines Objekts zu erhalten bzw. ein Objekt
aufzul6sen, muss neben dem Beugungsmaximum 0. Ordnung mindestens ein
Fraunhofer-Beugungsmaximum 1. Ordnung (+1. Ordnung oder -1. Ordnung)
in das Objektiv fallen (siche Abbildung 31 und Abbildung 34). Man spricht in
diesem Zusammenhang folglich vom

Gitterauflésungsvermogen.

Abb. 31 Zum Abbe-Kriterium. Mit

kleiner werdender Gitterkonstante g m GL

nimmt die Spreizung der Beugungs- g G "

ordnungen zu, sodass dann die 1. Beu- i i

gungsordnung nicht mehr in das Ob- E E
il A= == ===

Beim Fraunhofer-Beugungsspektrum des Strichgitters bezeichnet man die Hauptmaxima als
Beugungsmaxima m-ter Ordnung. Das Fraunhofer-Beugungsmaximum 0. Ordnung allein
liefert keine Bildinformation und somit auch keine Abbildung des Objekts. Durch jede
weitere hohere Beugungsordnung kommen Bildinformationen hinzu, sodass die Auflésung
bzw. die Bildschirfe zunimmt. Je gréfier der Offnungswinkel 2a des Objektivs ist, desto mehr
Beugungsordnungen kénnen vom Objektiv zum Aufbau des Bildes ,,herausgefiltert” werden.
Wird jedoch nur die 0. Ordnung herausgefiltert, so entsteht in der hinteren Brennebene
(Fourier-Ebene) nur ein Punkt bzw. eine Linie des Fraunhofer-Beugungsspektrums, das
Beugungsmaximum 0. Ordnung, und in der Bildebene nur ein Lichtfleck gleichméBiger
Helligkeit ohne weitere Bildinformationen.

Das Auflésungsvermogen des Mikroskops entspricht also der Gitterkonstante gmin, d. h. dem
Abstand zweier benachbarter Striche, bei dem gerade noch die 0. und die 1. Beugungsordnung
vom Objektiv durchgelassen werden. Bei weiterer Verringerung des Strichabstands (der
Gitterkonstante) g, wird das Spektrum der Beugungsordnungen rdumlich weiter gespreizt,
sodass nur noch die 0. Ordnung in das Objektiv gelangt und somit ein Bildaufbau nicht
mehr moglich ist.

'Ernst Carl Abbe (1840-1905): deutscher Physiker, Optiker und Industrieller.
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15.2.1 Senkrecht einfallendes Licht

Wir betrachten zunéchst den einfachen Fall, dass das Objekt (Strichgitter) mit senkrecht
einfallendem kohérenten Licht beleuchtet (durchleuchtet) wird (siche Abbildung 32).

+2. Ordnung

hintere
Brennebene

Abb. 32 Zum Aufldsungsvermogen des Mikroskops nach dem Abbe-Kriterium. Eine ebene kohéarente
Welle falle von links senkrecht auf das Strichgitter. Die Sammellinse generiert in ihrer hinteren Brennebene
aus dem am Gitter gebeugten Licht das Fraunhofer-Beugungsmuster und erzeugt schlieBlich in der Bildebene
das umgekehrte Bild des Strichgitters in einem bestimmten AbbildungsmaBstab.

Mit (72) und dem Gangunterschied As zwischen den benachbarten Strahlenbiindeln beim
Strichgitter hatten wir fiir die zugehorige Phasendifferenz

0=k-As=—-gsinf

gefunden. Gemés (73) gilt dann fiir die Hauptmaxima der Ordnung m beim Strichgitter

2 A 1
5m:7ﬂ--gsin9m:m'27r & g=m = g x

sin 0,, sinf,,

Nach dem Abbe-Kriterium, d. h. mit m = 1, und mit (140), also mit dem Zusammenhang

zwischen der Vakuumwellenldnge A\g und der Wellenlédnge im Medium mit dem Brechungsindex

n, ergibt dies

A (140) Ao
=

Gmin =

(135)

Gmin =

sin Omin n-sinOpin

Durch den Objektivdurchmesser ist dessen Offnungswinkel 2o vorgegeben. Und weil fiir
01 < a die 1. Beugungsordnung in das Objektiv fallen kann, erhalten wir schliellich

Ao

9min = -~
mn - Sl &«
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Dass sich mit dem Groflerwerden des Brechungsindex n das Auflésungsvermégen vergroflert
(Verkleinerung von gpmin), sehen wir auch bei Betrachtung der Phasendifferenz

Om = m - 27 77;; 0 =27

fiir die 1. Beugungsordnung:

2 1
51:27T:—7T-gsin91 & sinfp = — - A
A g

= sinf; x A,

A=20 1
=  sinf; o< — .

n
Damit wird deutlich, warum man bei Verwendung von Immersionsol als Medium zwischen Ob-
jekt und Objektiv das Auflésungsvermogen und damit die forderliche Vergroflerung eines
Mikroskops erh6hen kann. Vergroflerungen durch ein Mikroskop mittels stark vergroflernder
Okulare tiber die forderliche Vergroflerung hinaus liefern keine zusétzlichen Bildinforma-
tionen bzw. keine neuen Objektdetails, weshalb man dann von leerer Vergroflerung
spricht. Wahrend Luft nur einen Brechungsindex n =~ ng = 1 besitzt, hat Immersionsol
einen Brechungsindex von n = 1,5. Der gerade noch auflésbare Abstand zwischen zwei
Gitterstrichen bzw. zwei Punktquellen wird bei Verwendung von Immersionsol mit dem

Faktor 1 = 1%5 = 2/3 verringert, d.h. um 1/3 verkleinert.
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15.2.2 Schrig einfallendes Licht

Strichgitter +1. Beugungsordnung

einfallender Strahl

| 0. Beugungsordnung

Abb. 33 Zur ,schiefen Beleuchtung" des Strichgitters. Der Index ko steht fiir kondensorseitig und der
Index 1 fiir objektivseitig und/oder 1. Beugungsordnung. Ein vom Kondensor ausgehendes kohérentes
Lichtbiindel (einfallender Strahl) fallt unter dem Winkel 6y, auf die Beugungsebene (Strichgitter). Der
einfallende Strahl und die 0. Begungsordnung verlaufen in der gleichen Richtung. Im Folgenden ist zu
beriicksichtigen, dass entsprechend dieser Abbildung sin 6y, < 0 und sinf; > 0 gilt.

Man kann sich iiberlegen, dass fiir den Gangunterschied zwischen der 0. und der +1. Beu-
gungsordnung

As = Asy — Asgo = g sinfy — g sinby, fir 6, <0, ;>0 (136)

gilt, und nicht As = g - sin (|9k0| + |01\) , weil wegen des schrigen Einfalls eines kohédrenten
Lichtbiindels am Gitter bereits der Gangunterschied Asy, (innerhalb dieses Biindels) be-
steht. Durch die Beugung dieses einfallenden Lichtbiindels am Strichgitter entsteht dann
der zusétzliche Gangunterschied As;. Unter Beriicksichtigung von Abbildung 33 mit
sin(—6y,) = — sin 6y, und im Hinblick auf die folgende Herleitung des Auflésungsvermogens
des Mikroskops schreiben wir fiir (136)

As=g-|sinby|+g-|sinb].

Daraus resultiert dann die Phasendifferenz bei konstruktiver Interferenz in der 1. Beugungs-
ordnung entsprechend m = 1 und mit
o Ao

Ako , AL =A=—
Nko n

2m

N g|sin 6]

2
J = ig[sineko\ +
)\ko

2m . 27 .
= — §Nkol|sinbio| + ~— gn|sinby|,
/\0 )\0
27 . )
§ = 9 (nk0|sm¢9ko\ +n|sm€1|) = m-2m,
0
27 . )
O(m=1) = V4 (nk0| sin fyo| + 1| sin 61\) =27 . (137)
0

Hierbei ist die Gitterkonstante g vorgegeben. Wenn wir aber g nicht kennen, dafiir aber die
Winkel 6y, und 6, welche die 1. Beugungsordnung liefern, so kénnen wir die zugehorige
Gitterkonstante, also den Strichabstand g; durch Aquivalenzumformung aus (137) ermitteln:

" Nko| Sin Oko| + 1| sin 0|

9 (138)
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Bei vorgegebenem Offnungswinkel 2ac des Objektivs ldsst sich das Auflésungsvermogen des
Mikroskops durch ,schiefe Beleuchtung® oder genauer gesagt durch schiefe oder schrige
Durchleuchtung des Objekts vergrofiern (siehe Abbildung 34).

Kondensor

a b c

Abb. 34 Zum Auflésungsvermoégen des Mikroskops nach dem Abbe-Kriterium. Als Objekt dient hier ein
Strichgitter.

a Bei senkrechtem Lichteinfall bewirkt hier die vorgegebene Gitterkonstante g, dass sowohl die 0. und +1.
als auch die 0. und -1. Beugungsordnung gerade noch in das Objektiv fallen.

b “Schiefe Beleuchtung" des Strichgitters fiihrt hier dazu, dass die 0. und +1. Beugungsordnung auch bei
kleinerer Gitterkonstante g als in Abbildung a gerade noch in das Objektiv fallen.

¢ ,Schiefe Beleuchtung” durch einen Kondensor, der den gleichen Offnungswinkel 2a: wie das Objektiv
besitzt. Der Offnungswinkel 2« ist hier gleich dem kleinsten Winkel 0.5, entsprechend der minimalen
Gitterkonstante g1 = ¢min, die es ermoglicht, dass sowohl die 0. und +1. als auch die 0. und -1.
Beugungsordnung gerade noch in das Objektiv fallen. Infolge des schragen Lichteinfalls ist g, hier kleiner
als g in Abbildung a.

Das ist moglich, weil zur Bildentstehung neben der 0. Beugungsordnung nur mindestens eine
der 1. Beugungsordnungen (41. oder -1. Ordnung) erforderlich ist. Ist der Offnungswinkel
des Kondensors 2ay, und gilt

|sin Oxo| = sinak, und [sinf| =sina,

so definiert (138) den gerade noch auflosbaren Abstand bzw. den Mindestabstand zwischen
benachbarten Gitterstrichen fiir den allgemeinen Fall, dass die Brechungsindizes und die
Offnungswinkel kondensor- und objektivseitig verschieden sind:

)\0 /\0

Nio| SN Oko| + nfsinfy|  nyosinaye +nsina’

G9min =

Ao
MKondesor + MObjektiv

(139)

9min =

Das Produkt aus halbem Offnungswinkel von Kondensor bzw. Objektiv mit dem Brechungs-
index des jeweils umgebenden Mediums bezeichnet man als numerische Apertur NA des
Kondensors bzw. Objektivs.

Praktisch realisiert wird die ,,schiefe Beleuchtung® im einfachsten Fall durch einen Kondensor,
der den gleichen Offnungswinkel 2o wie das Objektiv besitzt (siche Abbildung 34 c). Die
allgemeine Formel (139) vereinfacht sich dann wegen sin oy, = sina zu

Ao
(Nko +n) -sina

9min =

Wenn das Medium kondensorseitig Luft gemafl nyx, = n =1 ist, was fast immer der Fall ist,
erhalten wir

N
(I14+n)- sina

9min =
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Und wenn das Medium sowohl kondensor- als auch objektivseitig Luft ist, so resultiert
schlieBlich die oft fiir das maximal mogliche ,, Aufldsungsvermogen® des Mikroskops angegebene

einfache Formel
Ao Ao
Jmin = . = 07 5 = .
2-sin« sin av

Das laterale Auflésungsvermogen des Mikroskops mit dem Abbe-Kriterium bei ,,schiefer
Beleuchtung* ist folglich fast identisch mit der

A
Grenzauflésung ¢gni, = 0,51 7_0 ,
n -sin o

bei der sich die benachbarten , Bildmittelpunkte®* bzw. Mittelpunkte der Airy-Scheiben im
Abstand der Halbwertsbreite der zugehorigen Fraunhofer-Hauptmaxima befinden.

Auflosbare Mindestabstinde g,,;;, bei verschiedenen Kriterien:

A
e Rayleigh-Kriterium: Gmin = 0,61 - 79 ,
n - sin o
o . Ao
e Abbe-Kriterium bei senkrechter Beleuchtung: Jmin = ——— ,
n - sin o
o . . Ao
e Abbe-Kriterium bei ,schiefer Beleuchtung*: Jmin = - - ,
Nko - SIN Oko + N - SIN
. Ao
fir axo =a und ng, =1 : gmin:—(l—i—n)-sinoz )
. Ao
fir oo =a und no=n=1 : Jmin = 0,50 - — ,
sin «v
. Ao
e Grenzauflésung: Jmin = 0,51 - ——— .
n - sin o
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16 Zur Abbe’schen Abbildungstheorie

« Abbe’sche Sinusbedingung!

Tatsache ist, dass die Lichtgeschwindigkeit ¢ vom Brechungsindex n des Ausbreitungs-
mediums abhéngt geméaf

¢c = L mit der Vakuumlichgeschwindigkeit cg .
n

AuBlerdem ist die Frequenz f des Lichts unabhéingig vom Medium, sodass fiir den
Zusammenhang zwischen der Wellenlédnge A und dem Brechungsindex n des zugehorigen
Mediums folgendes gilt:

o

C:E:)\'f &S c=nA-f= -f =

A 1
Vakuumwellenlinge A\g = n A = A= 2o = . (140)

n o n
Mit der Herleitung der Abbe’schen Sinusbedingung wird die Frage beantwortet, unter
welcher Bedingung eine weitestgehend aplanatische Abbildung, d.h. eine Abbildung

ohne nennenswerte sphérische Aberration, mit einer Sammellinse mdéglich ist.

Offnung A in Bild Bin
Objektebene Bildelbene
Phasenflache ,// N l
- 5
B
Asy i
Phasenflache
a b \

Abb. 35 Zur Abbe'schen Sinusbedingung. (Vergleiche mit den Abbildungen 15 und 16 im Abschnitt
11.2.1)

Wie in der Abbildung 35 zu sehen ist, beleuchten wir eine Kreisblende, das Objekt A
in der Objektebene, mit einer sehr weit entfernten und sehr ausgedehnten Lichtquelle
und greifen zwei hinter der Kreisblende resultierende Parallelbiindel mit ihren ebenen
Phasenfldchen heraus. Das eine Biindel verlaufe senkrecht zur Kreisblende und somit
entlang der optischen Achse, das andere verlaufe schrig zur Kreisblende bzw. im Winkel
« zur optischen Achse. Mittels einer Sammellinse entsteht aus den beiden Lichtbiindeln
in der Bildebene das umgekehrte Abbild B der Kreisblende im Abbildungsmafistab

|B|
M = —.
Al
Das schrige Lichtbiindel verlduft auf der Bildseite mit dem Winkel S zur optischen

Achse. Wenn wir jetzt die Strahlen vom Objekt zum Bild verfolgen, kénnen wir unter

1Siehe Wolfgang Demtroder, Springer-Lehrbuch Experimentalphysik 2 — Elektrizitat und Optik, Springer-
Verlag, Berlin, Heidelberg, New York, 2004, 3. Auflage, Abschnitt 9.5.7 Die aplanatische Abbildung, Seite 281

bis Seite 282.
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Beriicksichtigung der Tatsachen, dass die hintere Brennebene der Sammellinse durch
F' gleichzeitig die Fraunhofer-Beugungsebene ist, folgendes feststellen:

Von Pfeilbasis zu Pfeilbasis entsteht (objektseitig) vor der Fraunhofer-Beugungsebene
durch Wegverlangerung der Gangunterschied

Asg = |A|-sina.

Von Pfeilspitze zu Pfeilspitze entsteht (bildseitig) hinter der Fraunhofer-Beugungsebene
durch Wegverlangerung der Gangunterschied

Asy, = |B|-sinf.

Die aus diesen Gangunterschieden resultierenden Phasendifferenzen

_ _2r (140) 27 2w
6 = k-As T-As = TWO‘AS—TO‘TZAS
sind 5 9
Og = )\—W-na As, und 6§, = il ny Asy
0

Wenn wir bei vorgegebener Gegenstandsweite a dafiir sorgen, dass diese beiden Pha-
sendifferenzen gleich sind, erhalten wir eine aplanatische Abbildung, weil dann die
Anderung der Phase im Strahlenverlauf Objektpfeil-Spitze zu Bildpfeil-Spitze gleich
der Anderung der Phase im Strahlenverlauf Objektpfeil-Basis zu Bildpfeil-Basis ist:

0 =0 = ngAs, = nyAsy

ng - |Al-sina = ny-|B|-sinff <

i B
Abbe’sche Sinusbedingung w = u = M = const
ny sin |A|




17 Anhang

17.1 Hauptachsentransformation von Kegelschnitten zur Bestimmung der
Parameter von Ellipsen

Siehe dazu:
e Wikipedia, Suchbegriff Hauptachsentransformation.

e Friedrich W. Buckel, Internetbibliothek fiir Schulmathematik und Studium, 2022, Text Nr. 54303,
Suchbegriff mathe-cd Schrige Ellipsen Hauptachsentransformation .

e Suchbegriff /6 Figenwerte und Eigenvektoren symmetrischer Matrizen,
https://resources.mpi-inf .mpg.de/departments/dl/teaching/ss10/MFI2/kap46.pdf

e mein Skript Mathematik — Finige ausgewdhlte Themen fiir das Physikstudium, Kapitel 18 Figenwert-
gleichung einer 2-reihigen reellen Matriz — Verallgemeinerung fiir n-rethige Matrizen und Abschnitt
15.3 Diagonalisierung von Matrizen (Operatoren).

Kegelschnitte sind Kreise, Ellipsen, Parabeln und Hyperbeln. Unser Ziel ist es, im Allgemeinen zu zeigen, wie
man mit dem Verfahren der Hauptachsentransformation die Parameter von Kegelschnitten bestimmen kann,
die nicht in ihrer Normalform gegeben sind.

Die Losungsmenge einer quadratischen Gleichung mit mehreren Unbekannten (Variablen) ist eine Punkt-
menge, die Quadrik (Plural: Quadriken). Im R? bzw. in der Ebene, beispielsweise dargestellt durch ein
kartesisches (z, y)-Koordinatensystem, sind dies 2-dimensionale Quadriken, welche in der allgemeinen Form
durch die quadratische Gleichung

9 R a ¢/2\ [z
ax” +by " +cxy+drt+ey+ f = (x y) +dr+ey+ f
c/2 b y
(141)

FTAF+dz+ey+f =0

mit den Koeffizienten a, b, ¢, d, e, f definiert sind. Es handelt sich bei dieser Gleichung um eine implizite
Funktion der Form F'(z,y) = 0 und im Prinzip um ein unterbestimmtes nichtlineares Gleichungssystem, das
nur aus einer Gleichung aber mit zwei Unbekannten besteht.

Die symmetrische 2-reihige (quadratische) Matrix A in (141) besitzt mit den Koeffizienten a, b, ¢ die Form

A= (;2 Cg 2) . (142)

Die linke Seite von (141) wird quadratische Form genannt. Typische 2-dimensionale Quadriken sind beispiels-
weise die Kegelschnitte. Aber nicht alle Losungen von (141) sind Kegelschnitte, jedoch sind alle Kegelschnitte
Losungen von (141). Achsenparallele Kegelschnitte befinden sich in Normalform. Ist ein achsenparalleler
Kegelschnitt auch noch in Nullpunkts- oder Ursprungslage, so befindet er sich in seinem Hauptachsensystem,
d. h. die Hauptachsen des Kegelschnitts und die Achsen des Koordinatensystems fallen zusammen.

17.1.1 Hauptachsentransformation

Wir kénnen einen durch (141) beschrieben Kegelschnitt in die Normalform iiberfithren, indem wir
den Kegelschnitt im (z,y)-Koordinatensystem so drehen, dass er im (z,y)-Koordinatensystem achsen-
parallel liegt, oder indem wir das urspriingliche (z,y)-Koordinatensystem (dazu entgegengesetzt) drehen,
sodass das neue (£, n)-Koordinatensystem achsenparallel zum Kegelschnitt liegt. Dabei verschwindet der
Koeffizient ¢ bzw. der fiir die Verdrehung des Kegelschnitts aus der Normalform zustédndige gemischte Term
czy und aus der symmetrischen Matrix A wird mittels der Transformations- bzw. Drehmatrix S die

Diagonalmatrix Dy = STAS . (143)
Hilfreich ist hier, dass Drehmatrizen (reelle) orthogonale Matrizen sind und folglich die Eigenschaft
S=85"=5" undimR® detS=+1 oder detS=—1

besitzen. ST und S sind also die Matrizen fiir die Diagonalisierung A — Dy und gleichzeitig ist S aber auch
die Transformationsmatrix fiir den Ubergang der Koordinaten (£,7) — (z,y) geméiB

()= () -0
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Erlduterungen zur Verwendung der Drehmatrix S':

Das kartesische (&, n)-Koordinatensystem sei im mathematisch positiven Drehsinn gegeniiber dem kartesischen
(z,y)-Koordinatensystems um den gemeinsamen Koordinatenursprung um den Winkel a gedreht. Dann wird
die zugehorige Drehmatrix M iiblicherweise wie folgt notiert:

x cosa sina
<£>—M<> = M—:( , >—S—1—ST.
n Y —sina  cosa

In Anlehnung an den Wikipedia-Beitrag zur Hauptachsentransformation verwenden wir fiir unsere Drehmatrix

S
(:E> - M71 <£> - M71 - (C.OSOC _ Sina) - S - S (5) - <m> .
Yy n sin o cos o n y

Bei der Diagonalisierung von A mittels S verdndern sich die Koeflizienten a, b, ¢ bzw. sie werden so transfor-
miert, dass der Kegelschnitt im (z, y)-Koordinatensystem in seine achsenparallele Form gedreht wird. Die
anschliefende Umbenennung der Koordinaten ©z — &, y — n liefert dann die gewiinschte achsenparallele
Form des Kegelschnitts im (&, 7)-Koordinatensystem.

Da die Gleichung (141) keine Vektorgleichung ist, sind die Koeffizienten d und e der linearen Terme
(Glieder) dz und ey keine skalaren Vektorkomponenten und werden deshalb beim Ubergang zum gedrehten
(&¢,m)-Koordinatensystem nicht ,,direkt* transformiert. In diesen Gliedern betrifft die Transformation im
Grunde nur die Koordinaten z, y, die durch die Koordinaten &, i ersetzt werden miissen, indem man z = (&, n)
und y = y(&,n) verwendet. Die resultierenden Terme werden dann geordnet und schlieflich zu den linearen
Termen im (&, n)-Koordinatensystem zusammengefasst. Die Transformation der linearen Terme geschieht also
mittels S wie folgt:

x s £ cosa —sina £ £cosa —nsina z(&,n)
y N n - \sina cosa ) \n B Esina + necosa N y(&m) ’
d-a:+e~y:d-({cosoz—r]sinoz)—&—e-({sina—i—ncosa)
= (dcosa+esina) &+ (—dsina+ecosa) n,

d-z4+e-y=d-E+é-7

cosa  sina d . (d d
—sina  cosa e e é

Probe mit (&) =5""(}), (Sil)T = (ST)T =S und (AB)T =BTAT:

o= (G ) [ (O #16) - ()~ () =areen

mit

o)
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Symmetrische (n X n)-Matrizen wie beispielsweise die Matrix A in (142) lassen sich immer mit Hilfe einer
orthogonalen Matrix S diagonalisieren. So entspricht, wie wir spater noch sehen werden, beispielsweise die
Drehung einer Ellipse von (147) nach (146) der Diagonalisierung von A (nach Djy).

Wir erhalten die Drehmatrix S durch Bestimmung der Eigenwerte \; von A sowie durch Bestimmung der
zugehorigen normierten Eigenvektoren v; aus der quadratischen charakteristischen Gleichung wie folgt :

o Aufstellen der charakteristischen Gleichung! von A mit der Einheitsmatrix 1 :

det(A—A-Jl):det[(a 0/2)—>\<1 0)} a-A of2
c¢/2 b 0 1 c/2 b—A
= (a=N(b—-X) —(c¢/2)?
= X = Xa+b)+ab—(¢/2)> = 0. (144)

e Losen der (quadratischen) charakteristischen Gleichung (144):
Die beiden Lésungen sind die zur Matrix A gehoérenden Eigenwerte A1 und A2 .

¢ Bestimmen der normierten Eigenvektoren ¢; und ¥ aus den zwei Gleichungssystemen

o a — )\1 C/2 xX o ~ .
(A — A1 - ]l) ST = =0 = v; = Normierung = vi,
c/2 b—X1) \y
. a—XA2 ¢/2 x . ~ -
(A=Xx2-1)-7 = =0 = ¥ = Normierung = s .
c/2 b— )Xo y

e Zusammensetzen der normierten Eigenvektoren zur Diagonalisierungs- bzw. Transformationsmatrix
s = (5| @),

wobei die Orientierung der Eigenvektoren so gewéhlt werden muss, dass det S = +1 ist.

Die zu symmetrischen (reellen) Matrizen A gehérenden Eigenvektoren v; stehen orthogonal auf-
einander und sind normierte Basisvektoren. Sie bilden also in unserem zweidimensionalen Fall die
Orthonormalbasis {171, 172} .

« Mit der (orthogonalen) Transformationsmatrix S = S~! = ST kénnen wir jetzt die Diagonalmatrix
Dy = STAS berechnen, die den Koeffizienten des Kegelschnitts in Normalform entspricht und in der,
wie bereits diskutiert wurde, der Koeffizient ¢ verschwunden ist. Weiterhin stellen wir fest, dass die
Hauptdiagonalelemente von Dy die Eigenwerte von A sind gemaf

a 0 A0
Dy = -] = .
0 b 0 X

Durch das Verschwinden des gemischten Terms ¢y legen allein die neuen Koeffizienten @ = A; und b =
A2 den quadratischen Anteil der urspriinglichen Gleichung (141) fiir das (€, n)-Koordinatensystem fest,
denn dort erscheint der urspriingliche Kegelschnitt infolge der Drehung mittels S jetzt in Normalform,
dessen quadratische Terme jetzt nicht mehr durch die symmetrische Matrix A sondern durch die
Diagonalmatrix Dy dargestellt werden.

o Wegen f = f = const brauchen wir nur noch mit Hilfe der Transformation

() =) = @) = Gen)

die Koordinaten z, y durch die Koordinaten &, n darzustellen und erhalten aus (141)

ME+ Ao +da(En) +eyn)+f =0 =

=d&+én

MEFdeE+on’ +én = —f |. (145)

Kegelschnitte, die sich im (&, n)-Koordinatensystem in achsenparalleler Lage bzw. in Normalform
befinden, erfiillen die Gleichung (145).

'Die Matrix (A — A1) ist die charakteristische Matrix von A und die Gleichung det(A — X - 1) =0 st
die charakteristische Gleichung mit dem charakteristischen Polynom det(A — X\ -1).
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e Nach Ausklammern von A; aus den £-abhéngigen Termen und von A2 aus den n-abhingigen Termen

lasst sich die Gleichung (145) durch

d ~
quadratische Ergdnzung von 52 + )\—f und n2 + )\in
1 2
sowie anschliefender entsprechender Umformung auf die Form
(n— 770)2

(g—hgfo) + 2 =1 oder i(f—hgﬁo) :F(W_TIO) .

hi
bringen, aus der man dann die Mittelpunktslage (£o,70) sowie die Halbachsenlédngen he und h,, ablesen
kann.

Durch die Koordinatentransformation g = 7, d.h. durch

() = sC)

lassen sich schliellich auch noch die Mittelpunkts- und Scheitelkoordinaten der Kegelschnitte im
(z,y)-Koordinatensystem berechnen



17.1.2 Spezielle Ellipsen

Ellipsen in achsenparalleler Ursprungslage:

Diese befinden sich in der einfachsten Form und erfiillen die Gleichung

9 2 a O x T .
ax®+by —Q—fz(x y)o b +f =7+ f =0 (146)
Y
A diagonal
. . . . a 1 . b 1 At e s .
mit der Diagonalmatrix A = Dy und mit = = ;7 sowie = =2 schliellich die iibliche Gleichung
_ 2 _ 2

2 2

T Yy

I AR

hZz =~ h2

fiir eine Ellipse in ihrem Hauptachsensystem. Dabei ist h, die Linge der Halbachse in z-Richtung und h,
ist die Lédnge der Halbachse in y-Richtung. Entsprechend der Lénge von h, und h, spricht man von kleiner
und grofler Halbachse. Die Ellipsenachsen, manchmal auch Hauptachsen genannt, mit den Langen 2h, und
2h, stehen senkrecht aufeinander. Die kleine Ellipsenachse bezeichnet man als Nebenachse und die grofie
Ellipsenachse als Hauptachse.

Ellipsen in achsenparalleler Lage und mit dem Mittelpunkt (mo, yo) :

Diese erfiillen die Gleichung

(-2 -w)? _

h2 h2

Ausmultiplizieren der Binome liefert

1 1
hz (x272xx0+x(2)) + h—g (y272yy0+y§) =1

1 5 1 5 2x 2y0 x2 y(2)
= = — Ry — 4+ = —-1=0 =
h§$+h§y h%x h§y+h§+h§
————

ax2+by2+dx+ey+f =0.

Wie wir sehen, stehen die linearen Terme dz und ey fiir die Verschiebung des Mittelpunkts der Ellipse aus
dem Koordinatenursprung.

Ellipsen in nicht achsenparalleler Ursprungslage (schrige Ursprungsellipsen) :

Diese erfiillen die Gleichung

) 5 a ¢/2\ [z L
ar”+by  +caxy +f = (x y) 2 b y +f =7 A7 +f =0. (147)
—_————

A symmetrisch

Der gemischte Term cxy steht fir die Verdrehung der Ellipse im (z, y)-Koordinatensystem. Die Ellipse
ist folglich nicht achsenparallel. Das Fehlen der linearen Terme dz und ey zeigt, dass sich die Ellipse in
Ursprungslage befindet.
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17.1.3 Eigenwerte und Eigenvektoren zur Matrix A

Wir berechnen jetzt die Eigenwerte A; und die Eigenvektoren ¥; sowie die normierten Eigenvektoren ¥; der
reellen symmetrischen Matrix

A=) (

iiber die charakteristische Gleichung (144)

N = Aa+b) +ab—(c/2)* = 0

und das homogene lineare Gleichungssystem

Il
o

<a—)\ c/z)@ . I (a=Nz + Sy )
= =
c/2 b=X)\y II. gaz + (b-XNy =0.

Fiir lineares Gleichungssystem schreiben wir im Folgenden kurz LGS. Mit Hilfe der sog. pg-Formel

P P\?
1,2 B + D) q

zur Losung quadratischer Gleichungen und mit den Ersetzungen

—(a+b)=p und ab — (E)Q =q

erhalten wir die Eigenwerte

= (5 - (5 - e v,

a+b a+bY c\2
Ao : +\/( ; >—ab+(§)

N | =

[(a—l—b)—&—«/(a—b)?—kc?] .

Mit diesen Eigenwerten gehen wir in das homogene LGS (148), dessen Losungen dann die Eigenvektoren sind.

Hinsichtlich homogener LGS miissen wir dabei folgendes beriicksichtigen:
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Homogene LGS besitzen (immer) die triviale bzw. Nullvektor-Losung.

Ist die Anzahl der Variablen in der zu einem homogenen LGS gehorenden Koeffizientenmatrix gleich
ihrem Rang, so ist der Nullvektor die einzige Losung.

-~
Triviale Losungen bzw. Nullvektoren kommen als Eigenvektoren nicht in Betracht: o; # 0.

Ist der Rang der zu einem homogenen LGS gehorenden Koeffizientenmatrix kleiner als die Anzahl der
Variablen, so existieren unendlich viele Losungen, die als Eigenvektoren in Betracht kommen.

Eine derartige Matrix ist singulér (nicht invertierbar) und ihre Zeilen sind linear abhéngig. Ein zu
einer singuldren Koeffizientenmatrix gehérendes homogenes LGS besitzt also aufler der ,,obligatorischen®
trivialen Losung immer noch mehr als eine Losung.

Das bedeutet:

Das zur Koeffizientenmatrix gehérende homogene LGS darf nicht eindeutig losbar sein, um Eigenvektoren
zu liefern. Alle Vielfachen von Eigenvektoren sind ebenfalls Eigenvektoren.

Die Ursache dafir ist, dass das charakteristische Polynom, also die Determinante der charakteristischen
Matrix zur Bestimmung der zu den Eigenvektoren gehoérenden Eigenwerte, gleich Null gesetzt wurde.
Ist aber die Determinante einer Matrix gleich Null, so ist diese Matrix singular.

Reelle symmetrische (n x n)-Matrizen und allgemein auch hermitesche (n x n)-Matrizen besitzen nur
reelle Eigenwerte und genau n orthogonale Eigenvektoren zu verschiedene Eigenwerten.



Bestimmung der Eigenvektoren zur reellen symmtrischen Matrix A
a </2
A= , A= [(a—i—b)—i—\/(a—b)Q—i—cQ].
cf2 b

Wir verwenden jetzt den GauB-Algorithmus und schreiben dabei (148) wegen der besseren Ubersicht als
(zweizeilige) erweiterte Koeffizientenmatrix

0

NE

I fa=X ¢/2
(II) o (c/z b— A

a—%[((ﬂ—b)— (a—b)2+02] ¢/2 0

[@+b) = Via=bZ+e], =

N —
N =

Bestimmung von 51 (A1) aus

¢/2 —1 [(a+b)— (a—b)Q—&—cQ} 0
Wir dividieren die Zeile I durch a — % [(a—i—b) —+/(a —b)? —|—c2] :
1 c/ 2a—[(a+b)—\/(a—b)2—|—02]} 0

(149)
/2 b—%[(a—i—b)— (a—b)2+02] 0
Von Zeile II subtrahieren wir jetzt

02

£ . Zeile I von (149) = <
2 2 4a72[(a+b)f (afb)2+02]

und erhalten schliefllich die mit Hilfe des Gauf-Algorithmus vereinfachte erweiterte singuldre Koeffizientenma-

trix

1 C/Qaf[(aer)f (afb)2+02]} 0

0 0 0
Wegen (144) muss im letzten Schritt tatséchlich

2
C

1 2 02 _ =
{b—g[(a—l—b)— (a—b)2+ ]} 4a—2[(a+b)— (a—b)2+02] 0

resultieren, was wir durch akribisches Umformen und Ausmultiplizieren mit dem Zwischenergebnis

¢ = 4dab—2a [(a+b)— (a—b)z—l—cz]

~o[(a+b) —Va—0Pr |+ [ath) - Via-brre|

zeigen konnen:
& = dab—2(a+b)*+ (a+b)’+(a—b)*+& = . 0O

=0

Wir dirfen jetzt eine der beiden Variablen z; und y; frei wéhlen und erhalten mit ¥ < 1 aus der Zeile I

C

bt 2a — [(aer)f (afb)2+c2]

g1 =0

y1=1 c
— Tl = .
b—a—+/(a—0b)%+c?

Damit ist der nicht normierte Eigenvektor zum Eigenwert A; :

c
T

~ —a) — D)2 1+ 2

3 = _ | (b=a) (a=b)2+c
Y1 1
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Vollig analog ist die Bestimmung von %2 (A2) aus

a—1 |(a+b)+/(a—b)2+c? c/2 0
[ ]
/2 b—g[(a+b)+ (a—b)2+c2] 0
T2 = " (b—a) + Eafb)ﬂc?

Y2 1

— —

_ Vi Vi

5] Vaity?

1 (b—a) — /(a—1b)%+¢? (150)
v = 5 , 150
¢“{w—@— ) 1
1 (b—a) + \/(a—1b)%+¢?

(151)

\/1+{(ba)+ Eab)2+62:|2 1

17.1.4 Bestimmung der Halbachsenlidngen schriager Ursprungsellipsen

Zunéchst iiberfithren wir die Gleichung axz? 4 by? + cxy + f = 7L A7 + f = 0 fiir eine schrige Ursprungsellipse
durch Diagonalisierung von A, also durch

A= (@ ) Dagonanserang (8 0) (A0
c/2 b 0 b 0 A

ar” +by +f = PR f = a2t + ey’ +f =0
fiir die entsprechende achsenparallele Ursprungsellipse. Aus dieser Gleichung erhalten wir durch Aquivalen-
zumformung die iibliche Form der Ellipsengleichung

in die Gleichung

2 2 2 2
d ) _Z y _
Tt T Tmte -t 70

_ .=t _ )=t
he = N und hy = N

17.1.5 Bestimmung des Winkels a schriager Ursprungsellipsen

mit den Halbachsenléngen

Die Ellipsengleichung (147)
9 9 a <2\ [z
2 b)) \y
A

mit der symmetrischen Matrix A bildet eine schriage (nicht achsenparallele) Ellipse in Ursprungslage auf
das (z,y)-Koordinatensystem bzw. deren Standardbasis {€.,€,} ab. Zwischen der (grofien) Hauptachse der
schriagen (urspriinglichen) Ellipse und der z-Achse des (z, y)-Koordinatensystem liegt dann der Winkel a,
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den wir aus den Koeffizienten bzw. Parametern der schrigen Ellipse berechnen wollen. Dafiir bendtigen wir
die Drehmatrix S.
Die (passive) Drehung des kartesischen (z,y)-Koordinatensystems K um den Winkel o im mathematisch

positiven Drehsinn geméafl
z’ Lz cosa sina) [z
- S -
y y —sina cosa) \y

liefert das gedrehte (z',y’)-Koordinatensystem K’ und ist gleichbedeutend mit der (aktiven) Drehung des
Ortsvektors 7 = (2) innerhalb des (z,y)-Koordinatensystems K um den Winkel a im mathematisch
negativen Drehsinn. Die Umkehroperation dazu bzw. die Drehung in umgekehrter Richtung wird beschrieben

durch die Drehmatrix

cosa —sina
:( > = ST=g"1.

sin a cos o

Bei der Diagonalisierung von A geméaf (143)

MO
STAS = Dy = |7
0 A

mit der (orthogonalen) Drehmatrix

s = (5| ®),
deren Spalten die orthonormalen Eigenvektoren ¥; und @2 zu A sind, resultiert die Diagonalmatrix Dy, die
der Abbildung der urspriinglichen Ellipse in ihrem (z,y)-Hauptachsensystem entspricht. Anders gesagt, mit
Hilfe der Drehmatrix S wird die urspriinglich schrége Ellipse um den Winkel a so gedreht, dass sie schliefllich

im (z,y)-Koordinatensystem achsenparallel liegt. Der Ubergang von der schriigen zur achsenparallelen Ellipse
durch Drehung um den Winkel « stellt sich ausgehend von (147) wie folgt dar:

(z, y)A(z> — (2, 9) STAS(z) = (z,y) Du (;) .

Das aber bedeutet, dass wir den Drehwinkel a aus der Drehmatrix

. . cosa —sina . cos . —sina
S:(v1|v2): . = V1= . , Vg =
sin « Ccos av sin ar cos av
ermitteln kénnen, denn die normierten Eigenvektoren ¥; und @2 zur Matrix A hatten wir bereits mit (150)
und (151) berechnet.

Anmerkungen

Die Vertauschung der normierten Eigenvektoren bzw. der Spalten in der Drehmatrix S bewirkt eine Vertau-
schung der Eigenwerte in der Diagonalmatrix Dy und damit eine Anderung der Schrigstellung der Ellipse um
90°, also eine Vertauschung der Richtung von Haupt- und Nebenachse. Weil von vornherein aber nicht klar
ist, welcher der beiden Eigenvektoren die Richtung der Hauptachse und welcher die Richtung der Nebenachse
besitzt und da man der Ellipsengleichung (147) die Richtung der Ellipsenachsen nicht unbedingt ansieht,
kann es ratsam sein, sich diesbeziiglich vorab Klarheit zu verschaffen.

Dafiir bestimmen wir in (147) die beiden y-Werte fiir einen méglichst kleinen festen Wert o > 0, indem
wir az? + by? + croy + f = 0 in die quadratische Gleichung y? 4+ py + ¢ = 0 umformen und diese mittels der
sog. pg-Formel 16sen. Wir erhalten die beiden Losungen y4+(z0) > 0 und y—(zo) < 0, die uns zeigen, welche
der Ellipsenachsen durch den ersten Quadranten verlauft:

ly+] > |ly—| = (groBe) Hauptachse liegt im 1. Quadranten,
ly+] <|y—| = Nebenachse liegt im 1. Quadranten.

Dabei stellen wir fest, dass der kleinere der beiden Eigenwerte A den Eigenvektor liefert, welcher die Hauptachse
beschreibt. Wihlen wir beispielsweise A1 < A2, so beschreibt der zu A1 gehdrende Eigenvektor ¢ die Richtung
der Hauptachse und der zu Ay gehorende Eigenvektor ¥> die Richtung der Nebenachse.
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17.2 Zu Abschnitt 7.3 — Berechnung von £\, und Ej,

Achtung!

Die Lange der Halbachsen bezeichnen wir in diesem Abschnitt wie allgemein iblich mit
a und b. Abweichend davon hatten wir in der Abbildung 13 (wegen der Notation bei der
Hauptachsentransformation im Abschnitt 17.1) die Lénge der grolen Halbachse mit H und
die Lange der kleinen Halbachse mit h bezeichnet.

Das (2,y)-Koordinatensystem K’ sei das Hauptachsensystem der Ellipse

12 12 x = x/(y/)
T +Y (152)

K’ sei gegeniiber dem (z,y)-Koordinatensystem K um den gemeinsamen Koordinatenur-
sprung im mathematisch positiven Sinn um den Winkel o gedreht, sodass £ in K als die
schriage Ursprungsellipse £ erscheint. Die Substitution der K’-Koordinaten durch die zugeho-
rigen K-Koordinaten in (152) liefert dann die Gleichung von £ in K. Die dafiir erforderlichen
in (z,y)-Koordinaten ausgedriickten (z’,y)-Koordinaten erhalten wir mit der Drehmatrix
S~ gemiB

x o1 x cosa sina\ [z xcosa + ysina 2 (x,y)
v ) y] \—sina cosa) \y) \—zsina+ycosa) y(x,y))
Damit resultiert aus (152)

1 2 1 2
E = g<xcosa+ysina> —i—ﬁ(—xsina—i—ycosa) =1 = F(z,y) . (153)

Die Extrema (Index E) der Ellipse £ in K sind
yE = y(x0) = £|yg| an den Stellen z¢ = +£|zg| oder xy = F|xo|,
xp = x(yo) = £|xg| an den Stellen yo = *|yo| oder yo = Flyo| -

Diese bestimmen wir, indem wir zunéchst (153) implizit nach x bzw. nach y differenzieren
und anschlieflend % bzw. % gleich Null setzen. Dabei verwenden wir

d OF OF dy dy F, dx F,
Py =2+ Y g o Yo T yndanalog S =Y .
dx (z,9) or 0Oy dx dx F, tnd analog dy F,
dy a%Q(accosoH—ysina)cosoH—b%(—xsina%—ycosa)(—sina) Lo
dz L 2(zcosa+ysina)sina + 3 (—zsina + ycosa) cosa B
= z=z0 = y(@)=yg =
1 . 1 . . a?b?
—5 2(zg cos a + yg sin @) cosa+?2(—:cgsma+yEcosa)(—sma) =0 g

a
b? (zocosa +ygsina)cosa — a? (—zpsina+ ygcosa)sina = 0 <

2 2

zo (a%sin? a + b% cos? a) = ygpsinacosa (a? —b?),

(a? — b?) sin a cos

To = YE - = ks yE
a?sin? a + b2 cos? « x

kg
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Dies setzen wir in die Ellipsengleichung (153) fir F(z,y) — F(zo,yr) ein und erhalten

1 2
— (kz YE COS & + Yg sin a) +
a

2
(—kxyEsinoz—i—yEcosa) =1,

b
o (kg cosa + sina)? 42 (cos a — ky sin a)? | o
yE CL2 yE b2
9 a? b
Y b? (ky - cosa+sina)? + a2 (cosa —sina - k;)?
2 1
Ye = . 2 . 12
| (@2=bY)sinacosar cosa+sina| + — |cosa—sina - (a?—b2) sin a cos a
a2 | a?sin? a+b2 cos? o b2 a? sin? a+b2 cos? a |
(154)
1
YE =
i (a?—b2) sin a cos? a + sina 2 + i COoS or — (a2—b2)sin? a cos o 2
a2 | a?sin? a+b2 cos? b2 a? sin? a+b2 cos? a

yg entspricht dabei Ep, . Wie man sofort sieht, gilt wie erwartet
a=0° = yg = +b, a=90° = yg = +a.

Vollig analog erhalten wir aus dem Ansatz % 20 = F(x,y) — F(zg,y0) und
z(yo) = xp mit

(a® — b?)sina cos a i
Yo = : = - TE
a2 cos? o + b2 sin? o Y
ky
schlie3lich
2 1
.'L'E =

a2

(a2—b2)sin a cos a }2 + i |: (a2—b2)sinacosa

|:COS a+sma- a2 cos? a+b2sin? o b2 | a®cos? atb? sin? o

2 b
-cosa—sina}
(155)

- 1

TE
i cos o -+ (a2—b2) sin? & cos « 2 L L (a2—b?) sin a cos? o
a2 a? cos? a+b? sin? o b2 | aZcos? atb?sin?

. 2
—Sanéi|

g entspricht dabei Ey, . Wie man sofort sieht, gilt wie erwartet
a=0° = zg = +a, a=90° = zg==b.
Weiterhin gilt

a2+ v = 2f+uE |,

was man mit (154) und (155) beispielsweise fiir a = 45° = sin45° = cos45° = = leicht
zeigen kann, denn in diesem Fall gilt

S

1 1
oh +yE = §(a2+62)+5(a2+b2) = a>+b.
Und fir a=4, b=3, a=30° = sin30° = %, cos 30 = ? erhalten wir

13 =14,25, y2=10,75 = aZ+yi= 25 =a®+b>.
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